【数字预失真(DPD)】静态DPD设计扩展为自适应设计及评估两种自适应DPD设计:基于(最小均方)LMS算法、使用递归预测误差方法(RPEM)算法研究(Matlab&Simulink实现)

 👨‍🎓个人主页

💥💥💞💞欢迎来到本博客❤️❤️💥💥

🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。

⛳️座右铭:行百里者,半于九十。

📋📋📋本文目录如下:🎁🎁🎁

目录

💥1 概述

基于(最小均方)LMS算法和递归预测误差方法(RPEM)算法研究数字预失真(DPD)

引言

数字预失真(DPD)基础

定义与原理

静态DPD设计

自适应DPD设计

最小均方(LMS)算法

算法原理

优点与不足

递归预测误差方法(RPEM)算法

算法原理

优点与不足

实验与仿真

实验设置

实验步骤

实验结果

结论

📚2 运行结果

🎉3 参考文献

🌈4 Matlab代码、数据、文档


💥1 概述

数字预失真(DPD)是一种基带信号处理技术,用于校正射频功率放大器(pa)固有的损伤。这些损伤导致带外发射或光谱再生和带内失真,这与误码率(BER)的增加有关。作为LTE/4G发射机的特点,具有高峰均比的宽带信号特别容易受到这些有害影响。在本文中,我们举例说明了一个建模和模拟PAs和dpd的工作流。本文所示的模型基于两篇技术论文[1]和[2]。我们从PA测量开始。从测量中,我们推导出基于内存多项式的静态DPD设计。这样的多项式校正了PA中的非线性和记忆效应。出于仿真目的,我们构建了一个系统级模型来评估DPD的有效性。由于任何PAs特性都会随时间和操作条件而变化,因此我们将静态DPD设计扩展为自适应设计。我们评估了两种自适应DPD设计,一种基于(最小均方)LMS算法,另一种使用递归预测误差方法(RPEM)算法。

详细讲解见第4部分。

基于(最小均方)LMS算法和递归预测误差方法(RPEM)算法研究数字预失真(DPD)

引言

数字预失真(DPD)是一种基带信号处理技术,主要用于校正射频功率放大器(PA)固有的非线性损伤和记忆效应。这些损伤会导致带外发射、光谱再生和带内失真,进而增加误码率(BER)。在LTE/4G等宽带通信系统中,具有高峰均比的信号特别容易受到这些影响。本文旨在探讨基于最小均方(LMS)算法和递归预测误差方法(RPEM)算法的数字预失真技术。

数字预失真(DPD)基础

定义与原理

数字预失真技术通过在信号进入功率放大器之前,预先引入一个与功率放大器非线性特性相反的失真,从而抵消功率放大器产生的失真。这种技术可以有效改善信号的线性度,降低误码率。

静态DPD设计

静态DPD设计通常基于内存多项式模型,通过测量功率放大器的输入输出数据,推导出相应的多项式系数,以校正功率放大器的非线性和记忆效应。然而,由于功率放大器的特性会随时间和操作条件变化,静态DPD设计在实际应用中往往难以达到理想的校正效果。

自适应DPD设计

为了克服静态DPD设计的局限性,本文研究了两种自适应DPD设计:基于最小均方(LMS)算法和递归预测误差方法(RPEM)算法。

最小均方(LMS)算法

LMS算法是一种自适应滤波器算法,通过最小化误差信号的均方值来调整滤波器系数,以匹配理想滤波器。在DPD应用中,LMS算法可以实时调整预失真器的系数,以适应功率放大器特性的变化。

算法原理

LMS算法的核心是梯度下降法,通过迭代更新滤波器系数,使误差信号的均方值最小化。具体地,算法根据当前误差信号和输入信号,计算滤波器系数的更新量,并更新滤波器系数。

优点与不足

LMS算法具有低计算复杂度、在平稳环境中收敛性好等优点。然而,当误差曲面特征值分布分散时,LMS算法的收敛速度可能较慢。

递归预测误差方法(RPEM)算法

RPEM算法是一种基于预测误差的递归算法,通过预测功率放大器的输出并计算预测误差,来更新预失真器的系数。

算法原理

RPEM算法首先根据功率放大器的历史输入输出数据,建立预测模型。然后,利用预测模型预测当前输出,并计算预测误差。最后,根据预测误差更新预失真器的系数。

优点与不足

RPEM算法能够较好地处理功率放大器的记忆效应,提高预失真效果。然而,算法复杂度较高,对计算资源要求较高。

实验与仿真

实验设置

为了验证LMS算法和RPEM算法在DPD中的效果,我们进行了仿真实验。实验中使用Matlab和Simulink进行建模和仿真。

实验步骤

  1. 数据采集:从功率放大器测量中获取输入输出数据。
  2. 模型建立:基于内存多项式模型,建立功率放大器的静态DPD模型。
  3. 自适应DPD设计:分别实现基于LMS算法和RPEM算法的自适应DPD设计。
  4. 仿真评估:构建系统级模型,评估两种自适应DPD设计的性能。

实验结果

实验结果表明,两种自适应DPD设计均能有效改善功率放大器的线性度,降低误码率。其中,LMS算法在平稳环境中表现出较好的收敛性和稳定性;而RPEM算法在处理记忆效应方面更具优势。

结论

本文研究了基于LMS算法和RPEM算法的数字预失真技术,并通过仿真实验验证了其有效性。实验结果表明,两种算法各有优缺点,在实际应用中可根据具体需求选择合适的算法。未来工作将进一步优化算法性能,提高DPD技术的实用性和可靠性。

📚2 运行结果

 

  

 

 

 部分代码:

%% Test data used to derive coefs
load meas_pa;
pa_in   = pa_in;
pa_out  = pa_out;

toss  = 500;             % ignore initial data that could have transients 
pad   = 600;             % room to play at the end of the data set. 
traininglen = 20e4; % Arbitrary subset of pa_in data used to derive coefs
if traininglen > (length(pa_in)-pad-toss)
    error('Pick smaller subset for traininglen');
end

%% PA and DPD model parameters
memorylen_pa    = 3; %M
degree_pa       = 3; %K
degree_pd       = 5; 
memorylen_pd    = 5; 

coef_pd=complex(zeros(degree_pd*memorylen_pd,1));
coef_pa=complex(zeros(degree_pa*memorylen_pa,1));
%% Compute input scaling factor with overrange
% and scale raw input accordingly 
u = pa_in(toss+1:(traininglen+pad)); % select data and transpose
umax_inv = 1/(max(abs(u)));   
umax_inv = 1;
u = u*umax_inv; 
v = pa_out(toss+1:(traininglen+pad)); % select data  
% Normalize output data to the maximum data. Needed
% to make numeric algorithms work. Note that this step might cause problems
% if there is outlying data OR if one does not account for this scaling.
vmax_inv = 1/(max(abs(v)));  
%vmax_inv = 1;
v = v*vmax_inv;
% In general there is no point in deriving the PA model since we
% are not implementing it. Sometimes you may only have PA
% measurements however and from those you wish to simulate the PA
% in the time domain. You can in that case derive a PA model
% but keep in mind it may not be an excellent model if you're
% PA is predominantly IIR in nature. This is true since the 
% memory polynomial assumes an FIR model. An FIR filter is great for
% equalizing the effects of an IIR filter but not necessarily great at 
% modeling it. What we have found experimentially is that if you have 
% an IIR-dominant PA, then you can model the passband quite effectively with this technique
% but the stopband may suffer particularly when there is significant
% dynamic range, i.e. a lot of attenuation in the stop band.
if 0
    offset = 0;
    up = u(1:end-offset);
    vp = v(1+offset:end);
    % Compute PA model coefficients. 
    coef_pa   = fit_memory_poly_model(up, vp, traininglen, memorylen_pa, degree_pa);   

    figure;plot([1:length(coef_pa)],real(coef_pa),'r+-',[1:length(coef_pa)],imag(coef_pa),'b+-');grid
    title('PA coefficients');
end

if 1
% Compute DPD Algorithm Coefficients using reversed I/O's
% Adding delay to the output variable (v) was crucial in using this memory
% polynomial based derivation of the DPD. We delay the output
% to compensate for the delay inherent in the PA. 
% You must take your PA's particular delay into account. The input and output 
% are reversed for the DPD derivation. v is now the input and u is the output. By setting
% vp = v(1+offset:end) we are compensating for the delay in the PA. 
% Essentially we are making it appear that the output responds to the
% input "offset" samples earlier, non-causal ish.
% You can create this effective negative delay in the DPD coefficient 
% derivation using this "offset" varible. It is not
% necessary to get the offset value perfect. There is a range of acceptable
% values for offset. You simply need to capture the energy within the M taps you're
% alloted. One informal offset calibration procedure is to observe the derived
% DPD coefficients as you change "offset" by 1. You should see the DPD coeffs
% shift by 1 as well. If you notice an uncorrelated change in the DPD coefficients 
% then you're offset value needs correction. In some cases you may also
% need to make M larger if you're PA has multiple poles you're trying to
% compensate for. Ideally, place the largest tap in the center of your
% pipeline. So if M = 5, place the largest tap at 3 using "offset" as the
% tuning parameter. This gives you some slop on both sides in case the
% PA delay were to change a little.

🎉3 参考文献

部分理论来源于网络,如有侵权请联系删除。

[1]Morgan, Ma, Kim, Zierdt, and Pastalan. “A Generalized Memory Polynomial Model for Digital

Predistortion of RF Power Amplifiers”. IEEE Trans. on Signal Processing, Vol. 54, No. 10, Oct.

2006

[2]Li Gan and Emad Abd-Elrady. “Digital Predistortion of Memory Polynomial Systems Using

Direct and Indirect Learning Architectures”. Institute of Signal Processing and Speech

Communication, Graz University of Technology.

[3]Saleh, A.A.M., "Frequency-independent and frequency-dependent nonlinear models of TWT

amplifiers," IEEE Trans. Communications, vol. COM-29, pp.1715-1720, November 1981

🌈4 Matlab代码、数据、文档

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值