Java最大公因数

最大公约数

什么是最大公约数?

最大公约数(Greatest CommonDivisor,简称GCD)是指两个或多个整数共有的最大正因数,即能够同时整除这些数的最大的正整数。以两个整数为例,最大公约数表示这两个数最大的共有因数,也就是能够同时整除这两个数的最大整数。
例如,对于数字48和18,它们的最大公约数是6,因为6是48和18都能整除的最大整数。

最大公约数的计算
最大公约数(GCD)可以通过欧几里德算法(辗转相除法)来求解。算法的步骤如下:

用较大数除以较小数,得到商和余数。

48除以18,商为2,余数为12。
将较小数替换为原来的较大数,将余数替换为原来的较小数。

现在,将18替换为原来的12,将12替换为原来的18。
重复步骤1和2,直到余数为0。

18除以12,商为1,余数为6。
将12替换为6,将6替换为12。
12除以6,商为2,余数为0。
用数学理解以上描述:

48 % 18 =12
18 % 12 = 6
12 % 6 = 0
6即为最大公约数


求两个整数最大公约数主要的方法:

1.穷举法:分别列出两整数的所有约数,并找出最大的公约数。

2.素因数分解:分别列出两数的素因数分解式,并计算共同项的乘积。

3.短除法:两数除以其共同素因数,直到两数互素时,所有除数的乘积即为最大公约数。

4.辗转相除法:两数相除,取余数重复进行相除,直到余数为0时,前一个除数即为最大公约数。
————————————————

gcd函数写法

由于Java语言中没有像C++那样内置的gcd库函数,导致我做算法题很郁闷,于是总结了一下。

通过下述方法,我们可以轻松实现gcd功能。

  1. while循环(常速)
    此段代码a、b可以为0。
public static int gcd(int a, int b) {
   
    while (b != 0) {
   
        int temp = a % b;
        a = b;
        b = temp;
    }
    return a;
}
  1. 递归法(较快)
2. 此段代码a、b可以为0public 
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

blaizeer

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值