【深度学习之图像分割】

本文详细介绍了图像分割的基础知识,着重讲解了FCN(全卷积网络)和SegNet这两种深度学习模型,包括它们的结构、优点和缺点,以及常用的评价指标和数据集。通过对比,展示了FCN的全卷积和上采样技术,以及SegNet的编码-解码结构和内存效率特点。
摘要由CSDN通过智能技术生成


前言

随着计算机视觉和图像处理领域的不断发展,图像分割作为一项关键任务在各种应用中扮演着重要的角色。本文旨在介绍图像分割的基本概念、相关模型等。
本文将首先介绍图像分割的基本概念,然后讨论深度学习方法。通过阅读本文,读者将获得对图像分割领域的全面理解,以及可以进行实践。

一、简介

(一)、介绍

背景: 图像分割是将图像划分为不同区域或物体的计算机视觉任务。它在医学图像分析、自动驾驶、农业等领域发挥着关键作用。

定义: 在图像分割中,我们致力于识别图像中不同的区域,从而更好地理解图像的结构和内容。这与图像分类和目标检测有着本质上的区别。但学习图像分割任务时可以和目标检测任务进行对比来学习。

  • 传统方法:基于灰度值的不连续和相似的性质进行超像素分割。
  • 基于深度学习:利用卷积神经网络,每个像素都标注上其对应的类别。
  • 现图像分割一般泛指基于深度学习的分割方法,也称为语义分割。

(二)、常用数据集

  • Pascal VOC 2012(2007)
  • Cityscapes
  • CamVid
  • Coco

(三)、评价指标

  • MPA:均像素精度
  • MIoU:均交并比

二、FCN

(一)、简介

FCN(Fully Convolutional Network)是一种用于图像语义分割的深度学习模型。与传统的卷积神经网络(CNN)只能输出图像的整体类别标签不同,FCN具备像素级别的细粒度预测能力,可以将图像中的每个像素都标注为对应的语义类别。

FCN的核心思想是通过在网络中使用全卷积层来替代全连接层。全卷积层使得输入和输出的尺寸可以不一致,从而实现了对图像进行密集预测的能力。此外,FCN还引入了跳跃连接(skip connections)来融合网络中不同层级的信息,以提高分割的准确性。

FCN的网络结构通常由编码器和解码器组成。编码器部分通常采用经典的卷积神经网络结构(如VGG、ResNet等)来提取图像的高级特征。解码器部分则通过上采样和跳跃连接来还原特征图的尺寸,并将其与编码器中的低级特征进行融合,最终得到像素级别的语义分割结果。

FCN在图像语义分割任务中取得了很大的成功,并在许多公开数据集上取得了领先的性能。其应用领域广泛,包括医学影像分析、自动驾驶、智能监控等。

(二)、上采样

  • 线性插值

    一种从已知点集得到新点的方法,通过线性函数来估计新点的值。线性插值在图像处理中常用于 图像的放缩、旋转和变形等操作。

  • 双线性差值
    一种在二维空间中进行插值的方法,它利用周围四个已知点的值进行加权平均来估计新点的值。双线性插值在图像处理中常用于图像的放缩操作。

  • 反池化
    指在池化操作的逆过程中,通过将池化区域内的值还原到原始位置,来恢复特征图的尺寸。常见的反池化方法有最近邻插值和双线性插值。反池化在图像分割和目标检测等任务中常用于还原特征图的细节信息。

  • 反卷积
    指在卷积操作的逆过程中,通过将卷积核进行翻转和零填充,来恢复原始输入的尺寸。反卷积在图像处理和语音处理等领域中常用于还原输入信号的细节信息或恢复原始图像的尺寸。

(三)、FCN网络优点:

1.全卷积操作: FCN是全卷积网络,能够接受任意大小的输入图像并输出相应大小的分割图。这使得它适用于不同尺寸的图像,而无需固定大小的输入。
2.端到端的学习: FCN可以通过端到端的学习来优化图像分割任务,无需手工设计特征提取器。它通过在整个网络中使用卷积层进行像素级别的预测,允许模型从数据中学到更高级别的语义信息。
3.空间信息保留: FCN通过使用反卷积层(转置卷积或上采样层)进行上采样,有助于在分割输出中保留更多的空间信息。这有助于提高分割结果的准确性。
4.多尺度处理: FCN通过跳跃连接(skip connections)从不同层次的网络中获取特征图,允许网络在不同的尺度上进行分割,提高了对不同大小物体的适应性。

(四)、FCN网络缺点:

1.计算量大: FCN在处理大尺寸图像时可能需要较大的计算资源,尤其是当使用深层网络和大尺寸的卷积核时。这可能导致训练和推理时间较长。
2.容易过拟合: 当训练数据有限时,FCN等深度神经网络容易过拟合。过拟合可能导致在测试数据上的性能下降。

四、SegNet

(一)、简介

SegNet是一种用于语义分割的卷积神经网络模型。它由英国剑桥大学的研究人员开发,旨在通过像素级别的分类来实现对图像的语义分割。

SegNet模型的核心思想是使用卷积神经网络进行编码和解码。编码器部分负责从输入图像中提取高级特征,而解码器部分则将这些特征解码为与输入图像相同大小的语义分割结果。

SegNet模型的编码器部分采用了一系列卷积和池化层,其目的是逐渐缩小特征图的尺寸,同时增加特征的抽象程度。解码器部分则使用了与编码器相反的操作,将特征图逐渐恢复到输入图像的大小,同时利用反卷积操作将特征映射重建为语义分割结果。

SegNet模型还引入了一个重要的特性,即使用了像素级别的分类损失函数。这意味着模型不仅仅关注整体的分割效果,还会关注每个像素的分类准确性。这使得模型在处理边界和细节方面表现出色。

总的来说,SegNet是一种用于语义分割的卷积神经网络模型,具有较好的分割效果和像素级别的分类能力。它在许多图像分割任务中取得了良好的性能,并被广泛应用于医学图像分析、自动驾驶和智能监控等领域。

(二)、SegNet和FCN之间区别:

  1. 结构不同:FCN是全卷积网络,它将传统的卷积神经网络中的全连接层替换为卷积层,可以处理任意尺寸的输入。而SegNet是编码器-解码器结构,编码器用于提取特征,解码器用于恢复分割图像的分辨率。
  2. 上采样方法不同:FCN使用反卷积(或叫转置卷积)进行上采样,通过学习可逆的上采样算子将低分辨率特征图恢复到原始输入尺寸。SegNet使用最大池化索引进行上采样,通过存储最大池化层的索引,将池化层输出恢复到原始输入尺寸。
  3. 参数量不同:由于SegNet使用了最大池化索引进行上采样,所以在训练过程中不需要学习上采样参数,因此SegNet的参数量相对较小。

(三)、SegNet的优点:

1.高效的内存使用: SegNet通过使用最大池化索引(max-pooling indices)来存储池化层的位置信息,从而实现了高效的内存使用。这使得网络在进行上采样时能够还原对象的精细边界。
2.适用于实时应用: 由于SegNet对内存的有效利用,它在相对较低的计算和内存成本下能够提供高质量的语义分割结果。这使得SegNet适用于实时应用,如自动驾驶等。
3.简单的网络结构: SegNet相对简单,易于理解和实现。这使得它对于初学者来说是一个良好的起点,同时也有助于在资源受限的环境中进行部署。
4.适用于医学图像: 由于SegNet的内存效率,它在医学图像分割等领域得到了广泛的应用,特别是对于高分辨率的图像。

(四)、SegNet的缺点:

1.对遮挡敏感: SegNet是一个基于像素的方法,对于遮挡较为敏感。在存在遮挡的情况下,可能会导致分割性能下降。
2.对背景噪声敏感: SegNet对背景噪声比较敏感,可能在背景复杂或具有多样性的场景中表现不如一些更复杂的网络。


总结

本文主要介绍了FCN和SegNet两种用于语义分割的神经网络。FCN采用上采样策略,优点包括高效的端到端学习和全卷积结构,但对遮挡敏感。SegNet通过最大池化索引实现内存高效,适用于实时应用和医学图像,但对遮挡和背景噪声敏感。两者之间的区别在于上采样策略。

文献综述

[1].Long, J., Shelhamer, E., & Darrell, T. (2015). Fully Convolutional Networks for Semantic Segmentation. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2015.
[2].Ronneberger, O., Fischer, P., & Brox, T. (2015). U-Net: Convolutional Networks for Biomedical Image Segmentation. In Medical Image Computing and Computer-Assisted Intervention (MICCAI), 2015.
[3].Yu, F., & Koltun, V. (2017). Large Kernel Matters — Improve Semantic Segmentation by Global Convolutional Network. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2017.
[4].V. Badrinarayanan, A. Kendall, and R. Cipolla, “SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation,” IEEE Transactions on Pattern Analysis and Machine Intelligence (PAMI), vol. PP, no. 99, pp. 1-1, 2015.
[5].V. Badrinarayanan, A. Kendall, and R. Cipolla, “SegNet: A Deep Convolutional Encoder-Decoder Architecture for Real-time Semantic Segmentation,” arXiv preprint arXiv:1511.00561, 2017.

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值