% 导入数据
data = load(‘data.mat’); % 假设数据已保存在data.mat文件中
X_train = data.X_train; % 训练集输入特征数据,大小为[N_train, D]
Y_train = data.Y_train; % 训练集输出标签数据,大小为[N_train, 1]
X_test = data.X_test; % 测试集输入特征数据,大小为[N_test, D]
Y_test = data.Y_test; % 测试集输出标签数据,大小为[N_test, 1]
% 迁移学习预训练模型
pretrainedModel = trainPretrainedModel(X_train, Y_train);
% 提取特征
trainFeatures = extractFeatures(pretrainedModel, X_train);
testFeatures = extractFeatures(pretrainedModel, X_test);
% 构建GASF-CNN-Multihead-Attention模型
model = buildModel();
% 训练模型
model = trainModel(model, trainFeatures, Y_train);
% 测试模型
predictions = testModel(model, testFeatures);
% 计算准确率
accuracy = sum(predictions == Y_test) / numel(Y_test);
% 自定义迁移学习预训练函数
function pretrainedModel = trainPretrainedModel(X_train, Y_train)
% 在此处训练和配置预训练模型,可以使用现有的深度学习模型,如VGG、ResNet等
% 使用X_train和Y_train进行训练
% 返回预训练的模型
end
% 自定义特征提取函数
function features = extractFeatures(pretrainedModel, X)
% 在此处提取特征,可以使用预训练模型的某些中间层的输出作为特征
% 使用pretrainedModel和X进行特征提取
% 返回提取的特征
end
% 自定义GASF-CNN-Multihead-Attention模型构建函数
function model = buildModel()
% 在此处构建GASF-CNN-Multihead-Attention模型
% 可以使用MATLAB的深度学习工具箱或其他深度学习框架来定义模型结构
% 返回构建好的模型
end
% 自定义模型训练函数
function model = trainModel(model, trainFeatures, Y_train)
% 在此处训练模型
% 使用trainFeatures和Y_train进行模型训练
% 返回训练好的模型
end
% 自定义模型测试函数
function predictions = testModel(model, testFeatures)
% 在此处测试模型
% 使用testFeatures进行预测
% 返回预测结果
end
博主方向:机器学习和深度学习时序、回归、分类、聚类和降维
bp时序、回归预测和分类
ENS声神经网络时序、回归预测和分类
SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
CNN/TCN卷积神经网络系列时序、回归预测和分类
ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
ELMAN递归神经网络时序、回归\预测和分类
LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
RBF径向基神经网络时序、回归预测和分类
DBN深度置信网络时序、回归预测和分类
FNN模糊神经网络时序、回归预测
RF随机森林时序、回归预测和分类
BLS宽度学习时序、回归预测和分类
PNN脉冲神经网络分类
模糊小波神经网络预测和分类
时序、回归预测和分类
时序、回归预测预测和分类
XGBOOST集成学习时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断