% 加载数据
data = load(‘battery_data.mat’);
X = data.X; % 特征数据
Y = data.Y; % 目标数据
% 划分训练集和测试集
train_ratio = 0.8; % 训练集比例
train_size = floor(train_ratio * size(X, 1));
train_X = X(1:train_size, 😃;
train_Y = Y(1:train_size);
test_X = X(train_size+1:end, 😃;
test_Y = Y(train_size+1:end);
% 构建Transformer-LSTM模型
layers = [ …
sequenceInputLayer(size(X, 2))
transformerEncoderLayer(‘NumHeads’, 8, ‘ModelSize’, 64, ‘FeedForwardSize’, 128)
lstmLayer(64, ‘OutputMode’, ‘last’)
fullyConnectedLayer(1)
regressionLayer];
% 设置训练选项
options = trainingOptions(‘adam’, …
‘MaxEpochs’, 50, …
‘MiniBatchSize’, 32, …
‘SequenceLength’, 10, …
‘Shuffle’, ‘every-epoch’, …
‘Plots’, ‘training-progress’);
% 训练模型
model = trainNetwork(train_X, train_Y, layers, options);
% 预测测试集数据
predictions = predict(model, test_X);
% 绘制预测结果
figure;
plot(1:numel(test_Y), test_Y, ‘b’, ‘LineWidth’, 2);
hold on;
plot(1:numel(predictions), predictions, ‘r–’, ‘LineWidth’, 2);
xlabel(‘样本索引’);
ylabel(‘寿命预测’);
legend(‘真实值’, ‘预测值’);
title(‘锂电池寿命预测’);
% 保存模型
save(‘battery_model.mat’, ‘model’);