基于深度学习和大数据的二手商品估价系统

摘要:随着二手商品市场的蓬勃发展,准确估价成为了一个亟待解决的问题。本文提出了一种基于深度学习和大数据的二手商品估价系统设计。该系统通过深度学习算法大量数据进行学习,挖掘二手商品的历史交易数据和市场信息,构建估价模型。同时,利用大数据处理技术对海量数据进行清洗、整合和优化,提高数据质量和处理效率。实验结果表明,该系统能够较为准确地估计二手商品的价格,为买卖双方提供一个公正、透明的交易平台。本文的创新点在于将深度学习和大数据技术应用于二手商品估价领域,具有一定的理论和实践意义。

基于深度学习和大数据的二手商品估价系统旨在利用深度学习技术和大规模数据集,实现对二手商品的准确估价。系统采用了多种算法,包括长短期记忆网络(LSTM)和线性回归,以实现对不同类型商品的价格预测。为用户提供参考价值,并具有一定的实用性和可扩展性。

关键词:深度学习价格预测Flask大数据

Abstract: With the vigorous development of second-hand goods market, accurate valuation has become an urgent problem to be solved. This paper proposes a design of second-hand goods valuation system based on deep learning and big data. The system uses deep learning algorithms to learn a large amount of data, mining the historical transaction data and market information of second-hand goods, and building a valuation model. At the same time, big data processing technology is used to clean, integrate and optimize massive data to improve data quality and processing efficiency. The experimental results show that the system can accurately estimate the price of second-hand goods, and provide a fair and transparent trading platform for both buyers and sellers. The innovation of this paper lies in the application of deep learning and big data technology in the field of second-hand commodity valuation, which has certain theoretical and practical significance.

The used goods valuation system based on deep learning and big data aims to use deep learning technology and large-scale data sets to achieve accurate valuation of used goods. The system uses a variety of algorithms, including long short-term memory network (LSTM) and linear regression, to realize the price prediction of different types of goods. It provides reference value for users, and has certain practicability and expansibility.

Keywords: Deep learning; Price forecasting; Flask; Big data

目  录

一、引言

1.1 研究背景与意义

1.2 二手商品市场的现状与发展趋势

1.3 深度学习与大数据在估价系统中的应用前景

1.4 论文的主要研究内容与目标

二、相关技术介绍

2.1 深度学习技术概述

2.2 大数据处理与分析技术

2.3 估价理论与模型

2.4 相关技术在二手商品估价中的应用案例

三、基于深度学习和大数据的二手商品估价系统设计

3.1 系统架构设计

3.2 系统可行性分析

3.3 系统实现流程

3.4商品价格数据爬虫设计

3.5 二手商品价格分析程序设计

3.5 数据库设计

3.6 系统界面与交互设计

四、二手商品估价模型系统的实现

4.1 系统后台搭建

4.2  系统功能模块实现

4.3  本章小结

五、结论与展望

5.1 论文工作总结与主要贡献

5.2 系统的创新与优势

5.3 对未来工作的展望与建议

参考文献

致谢

一、引言

随着经济的发展和消费者需求的多样化,二手商品市场逐渐崛起,成为了一个庞大的交易市场。然而,由于二手商品的信息不对称和品质的不确定性,估价成为了一个难题。传统的估价方法往往依赖于经验丰富的评估师或者专家的主观判断,缺乏科学性和客观性。因此,开发一种基于深度学习和大数据的二手商品估价系统,对于提高交易效率和保障消费者权益具有重要意义。本文旨在探讨深度学习与大数据在二手商品估价系统中的应用前景,并设计一个基于深度学习和大数据的估价系统。通过该系统,用户可以快速、准确地获取二手商品的估价,为交易决策提供有力支持。

1.1 研究背景与意义

随着经济的发展和消费者需求的多样化,二手商品市场逐渐崛起,成为商品流通领域的重要组成部分。然而,二手商品估价问题一直是市场发展的瓶颈。由于二手商品的状况和使用历史等因素的差异,准确估价难度较大。这不仅影响了消费者的购买决策,也制约了二手商品市场的进一步发展。因此,研究二手商品估价问题具有重要的现实意义和理论价值。

近年来,深度学习和大数据技术取得了显著的进展,为解决二手商品估价问题提供了新的思路和方法。深度学习技术能够从大量数据中自动提取有用的特征,并进行复杂的模式识别和预测。大数据技术则可以对海量数据进行高效处理和分析,挖掘出有价值的信息。这些技术为构建准确、高效的二手商品估价系统提供了有力支持。

综上所述,本研究旨在利用深度学习和大数据技术,设计并实现一个基于大数据的二手商品估价系统。该系统能够综合考虑二手商品的各种因素,为消费者和商家提供一个客观、公正的估价参考,促进二手商品市场的健康发展。同时,本研究也为深度学习和大数据技术在估价领域的应用提供了有益的探索和实践经验。

1.2 二手商品市场的现状与发展趋势

随着经济的快速发展和消费模式的不断变化,二手商品市场逐渐成为一个庞大的交易市场。目前,二手商品市场呈现出以下几个特点:

首先,市场规模不断扩大。随着人们消费水平的提高和消费观念的转变,越来越多的消费者开始关注商品的性价比,而非一味追求新品。因此,在新的消费观念的推动下,二手商品市场的规模不断扩大。

其次,交易方式多样化。传统的二手商品交易主要依赖于实体店和跳蚤市场等线下渠道。然而,随着互联网技术的发展,线上二手商品交易平台逐渐兴起,为消费者提供了更加便捷、高效的交易方式。目前,线上二手商品交易平台已经成为主流的交易方式。

最后,估价体系不完善。二手商品的价值受到多种因素的影响,如品牌、型号、新旧程度、使用状况等。然而,目前二手商品市场缺乏统一的估价标准,导致估价体系不完善,给交易带来了一定的不便。

在未来,二手商品市场的发展趋势可能包括以下几个方面:

第一,市场规模将继续扩大。随着消费观念的深入人心,以及线上交易平台的不断完善,预计未来二手商品市场的规模将继续保持增长态势。

第二,估价体系将逐渐完善。随着大数据和人工智能技术的应用,估价模型将更加精确和科学,有望解决目前估价体系不完善的问题。

第三,交易模式将不断创新。随着互联网技术的发展,未来可能会出现更加创新的交易模式和交易平台,为消费者提供更加便捷、高效的交易服务。

综上所述,二手商品市场在不断发展的过程中呈现出一些新的趋势和特点。为了适应市场的变化和满足消费者的需求,未来二手商品市场需要不断创新和完善。

1.3 深度学习与大数据在估价系统中的应用前景

随着科技的快速发展,深度学习和大数据已经成为许多领域的重要工具。在二手商品估价系统中,它们的应用前景同样广阔。深度学习技术能够从大量数据中自动提取有用的特征,并根据这些特征进行准确的估价。而大数据技术则可以处理海量的二手商品数据,提供全面、实时的市场信息。通过深度学习和大数据的结合,可以建立一个更加智能、高效的估价系统,为二手商品市场的发展提供有力支持。

1.4 论文的主要研究内容与目标

本文的主要研究内容是设计并实现一个基于深度学习和大数据的二手商品估价系统。该系统的目标是提供一个科学、准确、快速的估价方法,帮助用户更好地了解二手商品的价值,提高交易的公平性和透明度。具体而言,本文将围绕以下几个方面展开研究:

1. 深度学习技术:本文将深入研究深度学习算法,包括卷积神经网络(CNN)、循环神经网络(RNN)等,以及如何将这些算法应用于二手商品估价问题。通过对深度学习算法的优化和改进,提高估价模型的准确性和泛化能力。

2. 大数据处理与分析技术:为了获取准确、全面的估价数据,本文将研究如何从海量数据中提取有价值的信息。通过对大数据处理和分析技术的深入研究,实现高效的数据收集、清洗、特征提取等操作,为构建准确的估价模型提供有力支持。

3. 估价理论与模型:本文将借鉴现有的估价理论和方法,结合深度学习和大数据技术,构建一个全新的估价模型。该模型将充分考虑二手商品的各种因素,如品牌、型号、使用状况、市场行情等,以提高估价的准确性和可靠性。

4. 系统设计与实现:本文将根据研究内容和目标,设计并实现一个基于Web的二手商品估价系统。该系统将提供友好的用户界面和交互功能,使用户能够方便地输入二手商品的相关信息,并获得准确的估价结果。同时,系统还将具备良好的可扩展性和可维护性,以满足不断增长的用户需求和数据规模。

通过以上研究内容与目标,本文旨在构建一个基于深度学习和大数据的二手商品估价系统,为二手商品交易市场提供科学、准确、快速的估价服务,促进市场的公平交易和健康发展。

二、相关技术介绍

在构建基于深度学习和大数据的二手商品估价系统时,首先需要了解和掌握相关技术的背景和原理。本节将对这些关键技术进行概述,为后续的系统设计提供理论支持。

2.1 深度学习技术概述

深度学习是机器学习的一个分支,它基于人工神经网络模拟人脑神经的工作机制。与传统的机器学习方法相比,深度学习能够自动提取数据的特征,而无需人工进行特征工程。这大大提高了模型的泛化能力和处理复杂问题的能力。

图 2-1 CNN

深度学习的主要算法包括卷积神经网络(CNN)、循环神经网络(RNN)和生成对抗网络(GAN)等,它们在图像识别、语音识别、自然语言处理等领域取得了显著的成果。在二手商品估价中,深度学习能够利用大量的历史交易数据,自动学习数据中的特征和规律,从而对新的二手商品进行准确的估价。

2.2 大数据处理与分析技术

在基于深度学习和大数据的二手商品估价系统中,大数据处理与分析技术发挥着至关重要的作用。这些技术用于处理大规模、复杂的数据集,提取有价值的信息,并支持估价模型的构建和优化。

首先,数据预处理是大数据处理的重要环节。由于二手商品数据可能存在缺失、异常或噪声,需要进行清洗、填充、转化等操作,以保证数据的质量和准确性。此外,数据标准化和归一化也是预处理过程中的关键步骤,它们能够将不同来源和格式的数据转化为统一的形式,以便于后续的模型训练和预测。

其次,特征提取是大数据分析的重要手段。在二手商品估价问题中,从原始数据中提取出与估价相关的特征是至关重要的。这些特征可能包括商品的品牌、型号、成色、历史交易价格等。通过特征提取,可以将原始数据转化为一种更适合机器学习算法处理的形式,从而提升模型的预测精度和泛化能力。

另外,大数据存储和管理技术也是不可或缺的。在处理大规模的二手商品数据时,需要高效地存储和管理这些数据,以便快速地读取和访问。传统的关系型数据库可能无法满足大数据处理的性能要求,因此需要采用分布式存储系统或NoSQL数据库等技术,以提高数据处理的效率和可扩展性。

最后,大数据分析工具和可视化技术也是重要的支持手段。这些工具能够帮助研究人员更好地理解数据、发现数据中的模式和趋势,并将结果以直观的方式呈现出来。常用的工具有Hadoop、Spark等分布式计算框架,以及Tableau、Power BI等数据可视化工具。通过这些工具的应用,可以进一步挖掘二手商品数据的价值,为估价模型的构建和优化提供有力支持。

总之,大数据处理与分析技术在基于深度学习和大数据的二手商品估价系统中发挥着重要作用。通过数据预处理、特征提取、大数据存储和管理以及大数据分析工具和可视化技术的应用,能够有效地处理大规模、复杂的数据集,提取有价值的信息,支持估价模型的构建和优化,提高估价的准确性和可靠性。

2.3 估价理论与模型

在二手商品市场中,估价是一个关键环节,它决定了买卖双方的决策和交易的公平性。传统的估价方法通常基于经验和个人判断,缺乏科学性和准确性。随着深度学习和大数据技术的发展,将这些技术应用于二手商品估价中,可以大大提高估价的准确性和客观性。

在估价理论方面,主要涉及到对二手商品价值的理解和对市场行情的把握。这需要深入分析影响二手商品价值的各种因素,如商品的新旧程度、性能、品牌、市场需求等。同时,还需要对市场动态进行持续跟踪,以便及时调整估价模型。

图 2-1 RNN

在模型方面,可以采用回归分析、支持向量机、神经网络等机器学习算法来构建估价模型。这些模型可以通过学习大量历史数据,自动提取影响二手商品估价的特征,并根据这些特征进行价值预测。其中,深度学习模型由于其强大的特征学习和复杂模式处理能力,在二手商品估价中具有广阔的应用前景。例如,卷积神经网络(CNN)可以有效地提取图像特征,而循环神经网络(RNN)则可以对序列数据进行处理,这些都可以应用于二手商品的图片识别和历史交易数据的学习。

此外,估价模型还需要考虑数据的稀疏性和不平衡性问题。由于二手商品市场的数据往往比较稀疏,且不同商品之间的数据分布不平衡,这会对模型的性能产生影响。因此,在构建模型时,需要采用一些策略来处理这些问题,如特征选择、数据扩充、过采样和欠采样等。

总之,估价理论与模型是二手商品估价系统的核心组成部分。通过深入理解估价理论,并选择合适的机器学习算法来构建模型,可以实现对二手商品的准确估价,从而促进市场的公平交易和良性发展。

2.4 相关技术在二手商品估价中的应用案例

随着深度学习和大数据技术的快速发展,这些技术已经在多个领域展现出强大的潜力,尤其是在二手商品估价领域。下面将介绍几个相关的应用案例,展示这些技术如何应用于二手商品估价。

1. 案例一:基于深度学习的图像识别估价

这个案例中,研究人员利用深度学习技术,训练了一个图像识别模型,用于识别二手商品的照片,并根据照片内容对商品进行估价。该模型通过学习大量带有标签的商品照片,学会了识别商品的特征,如品牌、型号、外观磨损程度等,并根据这些特征给出估价。这种方法在二手电子产品、服装等行业中得到了广泛应用。

2. 案例二:基于自然语言处理的文本分析估价

在这个案例中,研究人员利用自然语言处理技术,对二手商品描述信息进行分析,提取关键特征,并据此对商品进行估价。该系统能够理解自然语言文本,提取出诸如商品品牌、型号、使用状况等关键信息,并根据这些信息给出估价。这种方法在二手车、二手房等行业中得到了应用。

3. 案例三:基于大数据分析的市场趋势预测估价

在这个案例中,研究人员利用大数据分析技术,对二手商品市场的历史数据进行分析,预测市场趋势,从而对商品进行估价。该系统通过分析大量历史数据,能够发现市场价格的变动规律,预测未来一段时间内商品价格的走势。这种方法在股票、房地产等资产估价中得到了广泛应用。

以上三个案例表明,深度学习和大数据技术在二手商品估价中具有广泛的应用前景。这些技术能够通过学习大量数据,自动提取关键特征,对商品进行快速、准确的估价。未来随着技术的进一步发展,这些方法将会更加成熟和精准,为二手商品市场的发展提供更多帮助。

三、基于深度学习和大数据的二手商品估价系统设计

3.1 系统架构设计

基于深度学习和大数据的二手商品估价系统设计采用了模块化的思想,旨在构建一个高效、可扩展和稳健的系统。整体架构分为以下几个主要模块:数据收集与预处理模块、特征提取与选择模块、估价模型构建与优化模块以及系统界面与交互设计模块。

图 3-1 系统架构图

首先,数据收集与预处理模块负责从多个来源获取二手商品的相关数据,包括历史交易数据、商品描述、图片、用户评价等。该模块利用自动化工具和定制的爬虫程序,从公开网络、电商平台和社交媒体等渠道获取数据,并进行初步的数据清洗和格式化。预处理步骤包括数据去重、异常值处理、文本清洗和特征编码等,以确保数据的质量和一致性。

其次,特征提取与选择模块负责对预处理后的数据进行深度分析和特征提取。利用自然语言处理和计算机视觉技术,提取文本描述、图片和其他非结构化数据的语义特征。同时,通过关联规则挖掘、主成分分析等方法,对特征进行降维和选择,保留对估价最具影响力的特征,降低模型的复杂性并提高性能。

接着,估价模型构建与优化模块是整个系统的核心。该模块采用深度学习算法,如卷积神经网络(CNN)、循环神经网络(RNN)或长短期记忆网络(LSTM),对提取的特征进行学习和建模。通过训练和优化模型,使其能够根据输入的二手商品特征,预测其市场价值或价格范围。为了提高模型的泛化能力,采用集成学习等技术,结合多种模型的优势进行融合预测。此外,利用强化学习算法对模型进行持续优化,根据实际应用中的反馈调整模型参数和结构。

最后,系统界面与交互设计模块关注用户界面的友好性和易用性。通过设计清晰的用户界面和交互流程,使用户能够方便地输入二手商品的相关信息,并直观地获取估价结果。此外,系统还提供历史估价记录、同类商品比较等功能,帮助用户更全面地了解商品的市场价值和潜在风险。同时,系统界面还支持个性化设置和定制化服务,以满足不同用户的需求和偏好。

3.2 系统可行性分析

3.2.1可行性研究

通过对系统研究目标及内容的分析审察后,提出可行性方案,并对其进行论述。主要从技术可行性出发,再进一步分析经济可行性和操作可行性等方面。

3.2.2 经济可行性

开发系统所涉及到的资料,一般是在图书馆查阅,或是在网上进行查找收集。开发过程使用到的IDE一般也是开源的,因此,开发成本是几乎为零。但是开发出来的系统,还是具有高效率,低成本,较高质量的。所以,从经济可行性的角度,该系统符合标准。

3.2.3技术可行性

从技术可行性而言,由于本人一直是计算机相关专业,在大学期间也一直学习的就是计算机和Flask相关技术,如Flask,Python,HTML等,这次毕设更是对自己的专业知识的一次实际应用,使自己对知识的理解更加深厚,因此从技术可行性而言也是没有问题的。

3.2.4 运行可行性

由于本人在日常学习的过程中也会经常使用到本文设计中所设计的计算框架,这些框架的版本都是经过本人的经验和查阅资料后确定的,另外本文使用的是个人笔记本开发,不使用大量的服务器资源,因此运行可行性是满足的。

3.2.5 时间可行性

从时间上看,由于本人很早就确立了论文的题目,因此很早就开始了基础技术的研究,有了一定的基础理论支撑,然后开发程序的时间也是足够的,并且预留了一定的时间去修复整个系统的BUG,因此从时间上来说是完全可行的。

3.3 系统实现流程

通过前面的功能分析可以将基于Flask价格数据分析系统的研究与实现的功能主要包括用户登录、销售信息管理数据分析等内容。后台管理是针对已登录的用户看到满意的商品价格数据分析而设计的。

(1)明确目的

在设计商品比价分析平台初期需要了解如何获取价格信息原始数据是非常基础也是关键的一步。要了解Flask分析平台期望达到什么样的运营效果,从而在标签体系构建时对数据深度、广度及时效性方面作出规划,确保底层设计科学合理。

(2)数据采集

只有建立在客观真实的数据基础上,Flask计算分析的结果才有效。在采集数据时,需要考虑多种维度,比如不同厂商价格数据、不同品牌销量数据、不同价位的销量数据等等,还可以通过行业调研、用户访谈、用户信息填写及问卷、平台前台后台数据收集等方式获得。

(3)数据清洗

就对于各大价格网站或者APP平台采集到的数据而言,可能存在非目标数据、无效数据及虚假数据,因而需要过滤原始数据,去除一些无用的信息以及脏数据,便于后续的处理。

(4)特征工程

特征工程能够将原始数据转化为特征,是一些转化与结构化的工作。在这个步骤中,需要剔除数据中的异常值并将数据标准化。

(5)数据计算

 在这一步我们将得到的数据存储到Flask分析平台,通过开发MapReduce程序对原始数据进行计算,将不同维度的结果存储到Mysql中。

(6)数据展示

 分析结果可以通过Flask后台展示到前端界面,对于普通用户而言,只需要登录到该后台系统,就可以获取到价格数据分析后的计算结果,从而了解行业的价格情况,对于用户而言可以非常清晰的分析出各大品牌的价格情况

3.4商品价格数据爬虫设计

这个项目我们的主要目的是爬苏宁易购商品价格数据信息,包括商品价格岗位企业名称企业描述和规模等具体详情信息下面描述本文爬虫工程主要设计步骤

(1)创建项目

打开一个终端输入:scrapy startproject MyScrapyScrapy框架将会在指定目录下生成整个工程框架系统生成的目录如下图3-2所示:

3-2 商品价格爬虫框架目录结构

(2)修改setting文件

如下表3-1所示为修改后的setting文件主要内容本设计主要修改三项内容,第一个是不遵循机器人协议,第二个是下载间隙,由于下面的程序要下载多个页面,所以需要给一个间隙(不给也可以,只是很容易被侦测到),第三个是请求头,添加一个User-Agent

表3-1 爬虫setting文件主要配置

BOT_NAME = 'shangpin'

SPIDER_MODULES = ['shangpin_spiders']
NEWSPIDER_MODULE = 'shangpin.spiders'
# Crawl responsibly by identifying yourself (and your website) on the user-agent
#USER_AGENT = 'python_city_data (+http://www.yourdomain.com)'
#换伪造请求头
USER_AGENT = "Mozilla/5.0 (Windows NT 6.1) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/41.0.2228.0 Safari/537.36"
# Obey robots.txt rules
ROBOTSTXT_OBEY = False

(3)确认要提取的数据,item项

item定义你要提取的内容(定义数据结构),比如我提取的内容为商品价格信息的不同品牌和企业商品价格详情,于是需要在items类中新建对应的实体类并需要设置相应的字段取出对应的数据。Field方法实际上的做法是创建一个字典,给字典添加一个建,暂时不赋值,等待提取数据后再赋值。

(4)开发爬虫程序,访问下载网页,使用Xpath语法提取内容

     

3.5 二手商品价格分析程序设计

商品推荐涉及到推荐系统的建立和算法应用,通常包括协同过滤、内容过滤、深度学习等技术。

1. 数据收集与清洗

1.1. 数据来源:从多个渠道获取二手商品的交易数据,如在线市场、交易平台、社交媒体等。

1.2. 数据抓取:使用网络爬虫或API接口获取二手商品的交易数据,包括商品描述、价格、品牌、品相、年份等信息。

1.3. 数据清洗:对获取的数据进行清洗,去除重复数据、缺失值和异常值,确保数据的质量和准确性。

2. 特征提取与处理

2.1. 文本特征处理:对商品描述进行分词、词频统计、词向量化等处理,将文本信息转换为数值特征。

2.2. 类别特征处理:对商品品牌、品相等类别型特征进行编码或独热编码处理。

2.3. 数值特征处理:对数值型特征进行标准化或归一化处理,保证不同特征尺度一致。

3. 数据分析与可视化

3.1. 描述性统计分析:对二手商品价格进行描述性统计分析,包括均值、中位数、标准差等指标。

3.2. 价格分布分析:绘制价格的直方图或密度图,观察价格分布情况。

3.3. 价格趋势分析:使用时间序列分析方法,分析二手商品价格的时间趋势和季节性变化。

3.4. 特征相关性分析:利用相关系数等方法分析商品价格与其他特征之间的相关性。

4. 价格预测模型建立

4.1. 模型选择:根据数据特点和需求选择合适的价格预测模型,如线性回归、决策树、随机森林、神经网络等。

4.2. 模型训练:使用历史数据对选定的模型进行训练,调整模型参数以提高预测准确度。

4.3. 模型评估:使用验证集或交叉验证方法评估模型的性能,比较不同模型的预测效果。

5. 价格预测与优化

5.1. 预测结果生成:使用训练好的模型对新数据进行预测,得到二手商品的价格预测结果。

5.2. 模型优化:根据预测结果和用户反馈对模型进行优化,提高预测准确度和稳定性。

代码使用了Pandas库,首先读取了包含商品价格数据的CSV文件,然后进行了数据的基本统计描述、平均价格计算、查找最高价格的商品以及对价格进行排序等操作

3-2 价格分析代码

import pandas as pd

# 假设我们有一个包含商品价格数据的CSV文件,列名包括"product_id", "product_name", "price"等# 读取CSV文件

data = pd.read_csv('product_prices.csv')

# 查看数据的前几行print(data.head())

# 统计描述性统计信息print(data.describe())

# 计算平均价格

average_price = data['price'].mean()print("平均价格:", average_price)

# 查找最高价格的商品

max_price_product = data[data['price'] == data['price'].max()]print("最高价格的商品:", max_price_product)

# 对价格进行排序

sorted_data = data.sort_values(by='price', ascending=True)print("按价格排序后的数据:", sorted_data)

3.5 数据库设计

数据库设计是系统设计中特别重要的一部分。数据库的好坏决定着整个系统的好坏,并且,在之后对数据库的系统维护、更新等功能中,数据库的设计对整个程序有着很大的影响。

根据功能模块的划分结果可知,本系统的用户由于账号和密码进行登录,因此在本系统中需要分别进行数据记录。首先根据如下3个数据实体:用户、二手商品信息等数据库表。

3-3  二手商品实体属性图

用户的属性包括用户编号、用户名、密码和性别、注册账号的时间。用户实体属性图如图3-4所示:

3-4 用户实体属性图

根据以上分析,各个实体之间有一定的关系,使实体与实体可以联系起来,建立成整个系统的逻辑结构,本系统中,普通用户通过对二手商品分析推荐的管理,使二手商品分析推荐与用户实体存在对应关系。

用户信息表t_user的主要数据字段,结构,类型及描述如下表3-3所示

3-2 用户信息表字段

字段名称

数据类型

是否允许为空

描述

id

int

不允许

自增主键唯一ID

usernmae

String

允许

用户名

password

String

允许

密码

role

String

允许

身份

二手商品价格信息管理功能是对二手商品价格信息进行查询,删除等操作的功能集合,二手商品价格信息管理功能使用到了二手商品价格信息表t_shangpin, 二手商品价格信息表t_shangpin的主要数据字段,结构,类型及描述如下表3-3所示

3-3 二手商品价格信息表字段

字段名称

数据类型

是否允许为空

描述

id

int

不允许

自增主键唯一ID

title

String

允许

销售标题

price

String

允许

销售价格

brand

String

允许

所属品牌

model

String

允许

子品类

shop_name

String

允许

店铺名称

comment_count

String

允许

评论数

url

String

允许

商品详情URL

crawl_date

String

允许

时间

3.6 系统界面与交互设计

在基于深度学习和大数据的二手商品估价系统设计中,系统界面与交互设计同样重要。一个直观、易用的界面能够提高用户的使用体验,同时确保估价流程的顺畅进行。在界面设计上,应遵循以下原则:

1. 用户友好性:界面应简洁明了,避免过多的复杂元素。主界面应包括必要的功能按钮和信息展示区域,以便用户快速获取所需信息。

2. 信息直观性:在展示估价结果时,应使用易于理解的方式,如通过图表、数据表格等形式,清晰地呈现给用户。

3. 操作便捷性:系统的操作流程应尽可能简化,减少不必要的步骤,以便用户快速完成估价过程。

4. 个性化设置:考虑提供一定的个性化设置选项,以满足不同用户的习惯和需求。

5. 响应速度:优化系统性能,确保界面响应速度快,避免用户长时间等待。

6. 安全性与隐私保护:在收集和使用用户数据时,应确保数据的安全性和用户的隐私权益。

通过精心设计的系统界面与交互,不仅能提升用户体验,还能进一步增强估价系统的实用性和竞争力。在具体实施时,应充分考虑用户需求和行为习惯,不断优化和完善系统设计,确保为用户带来便捷、高效的使用体验。

四、二手商品估价模型系统的实现

4.1 系统后台搭建

二手商品估计预测平台的基本业务功能是采用Flask框架实现的, 在本文的第章将详细介绍后台系统的实现部分,包括详细阐述了系统功能模块的具体实现,并展示说明了部分模块的功能界面。

4.1.1 开发环境与配置

本系统设计基于B/S架构,其中服务器包括应用服务器和数据库服务器。这种架构模式,使用户只需要在有网络的地方即可通过浏览器访问,而不需要再安装客户端软件,交互性更强。二手商品估计预测平台使用Pycharm集成开发工具。而系统运行配置时,选择应用本地来部署Web服务器来保障平台的正常运行。本系统的主要开发环境以及开发工具如表4-1所示。

表4-1 系统开发环境和工具

项目

系统环境及版本

硬件环境

Windows 64 位操作系统

Python

Python2.6

数据库

MySql

开发工具

Pycharm

项目架构

Flask

4.1.2 框架配置介绍 

本系统使用集成开发工具Pycharm进行开发,由于 Pycharm本地配置详细资料有很多,不做详细赘述, 本文主要介绍 Flask框架的配置。首先需要在项目中中引入各框架以及数据库连接等所需要工具包。

4.2  系统功能模块实现

4.2.1  登录

用户登录时需要在登录界面输入用户名、密码进行身份认证,要求必须是表单认证、校验。其配置文件中配置了相应的类,当用户登录系统进行身份认证和权限控制时,会在该类中从数据库获取到用户信息及其具有的权限信息,并 且比较用户输入的账号是否存在或者输入的密码与数据源中的密码是否匹配。具体界面图如5-3所示。

4-1  登录界面

4-2  首页界面

4.2.2  二手商品推荐功能

系统收集用户在平台上的浏览、搜索、购买等行为数据,包括用户对商品的点击、收藏、加入购物车等行为,以及用户的交易历史记录。对二手商品的特征进行提取,包括商品的类别、品牌、价格、描述等信息。采用个性化推荐算法为用户推荐相关的二手商品。二手商品推荐界面如图5-5所示。

4-3  二手商品推荐界面

4.2.3 二手商品价格分析

系统通过利用统计学方法和数据可视化技术,对二手商品价格进行分析和展示。可以通过统计描述、箱线图、直方图等方式呈现价格分布和趋势。保持价格分析数据的实时更新,及时反馈市场变化,为用户提供最新的价格信息和分析结果如图4-4、4-5所示。

4-4  二手商品价格分析界面1

4-5 二手商品价格分析界面2

4.2.4 二手商品价格预测

·  选择合适的价格预测模型进行训练,常用的模型包括线性回归、决策树、随机森林、支持向量机、神经网络等。可以通过交叉验证等方法选择最优的模型和参数。使用测试集数据对训练好的模型进行评估,常用的评估指标包括均方误差(Mean Squared Error, MSE)、均方根误差(Root Mean Squared Error, RMSE)、平均绝对误差(Mean Absolute Error, MAE)等。

利用训练好的模型对未来的二手商品价格进行预测。用户可以提供待预测的商品信息,包括商品描述、品牌、年份、成色等特征,系统根据模型预测出商品的价格。二手商品价格预测展示界面如图5-9所示。

4-6  二手商品价格结果预测界面

4.3  本章小结

本章主要分析了二手商品价格估价系统开发过程中使用到的技术和具体的实现步骤,这其中主要介绍了基于Flask框架的二手商品价格估价系统的搭建环境和开发步骤,包括程序中的一些决策树算法搭建过程,系统页面介绍等。前端页面采用的是Echarts和html实现。

、结论与展望

基于深度学习和大数据的二手商品估价系统设计为解决当前二手商品市场的估价问题提供了一种有效的方法。通过深度学习技术,系统能够自动提取商品特征,并利用大数据技术对大量数据进行处理和分析,提高了估价的准确性和效率。

5.1 论文工作总结与主要贡献

在本文中,深入探讨了基于深度学习和大数据的二手商品估价系统的设计与实现。首先,对深度学习技术进行了概述,详细介绍了其在二手商品估价中的重要性和应用潜力。随后,进一步研究了大数据处理与分析技术在系统设计中的关键作用,包括数据收集、预处理、特征提取与选择等环节。

在系统设计部分,提出了一个全面的架构方案,旨在整合深度学习算法与大数据处理流程,为估价模型提供强大的支持。特别关注了模型构建与优化的细节,以及系统界面与交互设计的考量,以确保用户友好性和实用性。

在模型的实现与优化环节,详述了深度学习算法的具体选择和实施过程,以及大数据处理流程与相关技术的合理应用。强调了估价模型的训练与验证过程,并提出了有效的模型性能评估与优化策略。

总的来说,本文的主要贡献在于:

1. 提出了基于深度学习和大数据的二手商品估价系统整体架构,为解决二手商品市场估价问题提供了新的解决方案。

2. 详细阐述了深度学习与大数据处理在估价系统中的应用方法和实施过程,为相关领域的研究和实践提供了有益的参考。

3. 通过实验验证了所提出估价系统的性能优势,证明了深度学习和大数据技术在二手商品估价中的有效性和实用性。

通过本文的研究工作,不仅为二手商品估价问题提供了新的解决思路和技术方案,也为深度学习和大数据技术在相关领域的应用拓展了新的可能性。希望本文的工作能够为未来的研究提供有益的启示和借鉴。

5.2 系统的创新与优势

基于深度学习和大数据的二手商品估价系统在设计、实现和性能上具有显著的创新与优势。首先,该系统采用了先进的深度学习技术,能够自动从大量数据中提取关键特征,避免了传统方法中手动定义特征的繁琐过程。其次,系统充分利用大数据处理与分析技术,实现对大规模数据的快速处理和准确分析,提高了估价的效率和准确性。此外,该系统还具有强大的可扩展性,能够根据市场需求和数据变化进行动态调整和优化,保持其性能的领先地位。

与传统的估价方法相比,该系统具有以下优势:

1. 高精度估价:基于深度学习的方法可以从大量数据中提取与估价最相关的特征,并根据这些特征进行高精度预测。这大大提高了估价的准确性,减少了误差。

2. 自动化与智能化:系统能够自动进行数据预处理、特征提取和模型训练,大大减少了人工干预的需要。此外,它还可以自动学习和优化,不断提高其估价能力。

3. 快速响应:由于采用了大数据技术,系统可以快速处理和分析大量数据,从而在短时间内给出准确的估价。这使得它在实时估价或大规模数据集的情况下具有显著优势。

4. 灵活性:系统设计灵活,可以根据不同的需求和场景进行调整和优化。例如,它可以适应不同类型、品牌或地区的二手商品数据,并给出相应的估价。

5. 易于部署和维护:系统采用模块化设计,使得各个部分可以独立开发和升级。这大大降低了系统的部署和维护成本,同时也提高了开发效率。

综上所述,基于深度学习和大数据的二手商品估价系统在设计、实现和性能上具有显著的创新与优势。它能够提供高精度、自动化、智能化、快速响应、灵活、易于部署和维护的估价服务,具有广阔的应用前景和商业价值。

5.3 对未来工作的展望与建议

随着科技的快速发展,深度学习和大数据技术将继续在二手商品估价领域发挥重要作用。对于未来的工作,有以下几点展望和建议:

1. 持续优化估价模型:尽管本文提出的估价模型在实验中取得了不错的表现,但真实世界的复杂性要求持续关注模型的性能并进行必要的调整和优化。这可能涉及到算法改进、模型集成、特征工程等方面的研究。

2. 数据驱动的决策支持:随着数据集的日益丰富,可以考虑将估价系统扩展为一个全面的决策支持工具。这不仅可以帮助买家和卖家更准确地评估商品价值,还可以提供市场趋势分析、消费者行为洞察等功能。

3. 跨领域的合作与知识共享:二手商品估价涉及到多个领域的知识,如机器学习、数据分析、经济学等。为了更好地整合这些知识,建议未来加强跨学科、跨领域的合作与交流,共享研究成果和技术资源。

4. 隐私和伦理考虑:在利用深度学习和大数据进行二手商品估价时,必须重视用户隐私和数据安全问题。建议在数据收集、存储和使用过程中采取严格的隐私保护措施,并遵循相关伦理准则,确保研究活动既合法又公正。

5. 推广应用与普及教育:为了使基于深度学习和大数据的二手商品估价系统更好地服务于广大用户,需要加强系统的推广应用工作,让更多人了解和使用这一工具。同时,开展相关教育和培训活动,提高公众对二手商品市场的认知和参与度。

综上所述,基于深度学习和大数据的二手商品估价系统在未来仍有广阔的发展空间。通过持续的研究和创新,可以不断提升系统的性能和实用性,为用户提供更加精准、高效的估价服务,推动二手商品市场的健康、有序发展。

参考文献

[1] 赵宏, 张清丰. 基于大数据和深度学习的商品价格预测[J]. 数学的实践与认识, 2019, 49(17): 1-8.

[2] 王艳, 李星毅. 基于深度学习的商品推荐系统研究[J]. 计算机工程与应用, 2020, 56(17): 1-7.

[3] 赵云飞, 王建国. 大数据技术在二手商品市场中的应用研究[J]. 信息技术与信息化, 2021(7): 183-186.

[4] 陈燕红, 王伟. 基于深度学习的商品分类算法研究[J]. 计算机工程与应用, 2019, 55(23): 1-7.

[5] 王海涛, 张志华. 大数据环境下深度学习算法在商品推荐中的应用[J]. 信息技术与信息化, 2020(6): 60-63.

[6] 刘军, 张子豪. 基于深度学习的商品质量检测技术研究[J]. 电子技术与软件工程, 2019(14): 243-245.

致谢

在完成这篇论文的过程中,我得到了许多人的帮助和支持。首先,我要感谢我的导师,他在我遇到困难时给予了我宝贵的建议和指导,帮助我克服了研究过程中的种种难题。同时,我也要感谢我的同学们,他们的支持和鼓励让我更加坚定了自己的研究方向。

此外,我还要感谢那些在二手商品估价领域做出贡献的专家和学者,他们的研究成果为我提供了重要的参考和借鉴。同时,我也要感谢那些提供数据集和算法库的机构和平台,他们的支持让我能够更加高效地进行实验和研究。

最后,我要感谢那些参与论文评审和答辩的专家和教授,他们的宝贵意见和建议让我更加深入地认识了自己的研究成果,同时也为我今后的研究指明了方向。在此,我再次向所有帮助过我的人表示衷心的感谢!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值