基于麻雀算法优化的最小乘支持向量机(SSA-LSSVM)在交通流时序数据预测中的应用

159 篇文章 34 订阅 ¥59.90 ¥99.00
本文介绍了基于麻雀算法优化的最小乘支持向量机(SSA-LSSVM)在交通流时序数据预测中的应用。通过在Matlab中实现SSA-LSSVM模型,数据标准化、麻雀算法的迭代优化过程以及预测结果的可视化,以提升预测准确性。
摘要由CSDN通过智能技术生成

基于麻雀算法优化的最小乘支持向量机(SSA-LSSVM)在交通流时序数据预测中的应用

交通流时序数据预测在交通管理和规划中起着重要的作用。为了提高预测准确性,许多研究者采用支持向量机(SVM)作为预测模型。然而,传统的SVM模型在参数选择和性能优化方面存在一定的挑战。为了解决这个问题,麻雀算法(Sparrow Search Algorithm, SSA)被引入到SVM中,形成了SSA-LSSVM模型,以提高预测性能。

以下是在Matlab中实现基于麻雀算法优化的最小乘支持向量机(SSA-LSSVM)的代码示例:

% 步骤1:准备数据
% 假设我们有一组交通流时序数据,存储在变量X中,对应的目标值存储在变量Y中

% 步骤2:数据预处理
% 对数据进行标准化处理,以提高模型的训练效果
X = zscore(X)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值