基于麻雀算法优化的最小乘支持向量机(SSA-LSSVM)在交通流时序数据预测中的应用
交通流时序数据预测在交通管理和规划中起着重要的作用。为了提高预测准确性,许多研究者采用支持向量机(SVM)作为预测模型。然而,传统的SVM模型在参数选择和性能优化方面存在一定的挑战。为了解决这个问题,麻雀算法(Sparrow Search Algorithm, SSA)被引入到SVM中,形成了SSA-LSSVM模型,以提高预测性能。
以下是在Matlab中实现基于麻雀算法优化的最小乘支持向量机(SSA-LSSVM)的代码示例:
% 步骤1:准备数据
% 假设我们有一组交通流时序数据,存储在变量X中,对应的目标值存储在变量Y中
% 步骤2:数据预处理
% 对数据进行标准化处理,以提高模型的训练效果
X = zscore(X)