Kruskal-Wallis检验与Friedman检验:非参数统计中的秩和差异分析
引言:
在统计学中,对于一组数据,我们经常需要确定其是否存在显著的差异。当数据不符合正态分布或无法满足其他假设条件时,传统的方差分析方法可能失效。为了解决这个问题,非参数统计方法成为了一种重要的选择。本文将介绍两种常用的非参数检验方法:Kruskal-Wallis检验和Friedman检验。我们将通过R语言实现这两种检验,并以实例说明其应用。
一、Kruskal-Wallis检验
Kruskal-Wallis检验也被称为单因素方差分析的非参数等级和检验。它用于比较两个或更多组独立样本的位置差异。下面是使用R语言进行Kruskal-Wallis检验的一个示例:
# 创建数据
group1 <- c(2, 4, 6, 8, 10)
group2 <- c(3, 5, 7, 9, 11)
group3 <- c(1, 3, 5, 7, 9)
# 将数据合并到一个数据框中
data <- data.frame(Group = rep(c("Group 1", "Group 2", "Group 3"), each = 5),
Value = c(group1, group2, group3))
# 执行Kruskal-Wallis检验
kruskal.test(Value ~ Group, data