Kruskal-Wallis检验、配对Wilcoxon检验、Friedman检验案例教程

一、多组独立样本Kruskal-Wallis检验

Kruskal-Wallis检验全称为Kruskal-Wallis H 检验,简称为“K-W检验”或“H检验”,中文一般翻译为克鲁斯卡尔-沃利斯检验。是完全随机设计多个独立样本比较的秩和检验方法,它用于推断定量数据或等级资料的多个独立样本来自的多个总体分布是否有差别。单因素方差分析在不满足正态性、方差齐性条件时,Kruskal-Wallis检验用作其非参数检验的替代方法。也可用于单向有序的R×C列联表差异检验。

Kruskal-Wallis检验总体达到显著后,可通过多重比较进一步比较各组间差异。常见的非参数类多重比较方法比如Nemenyi、Dunn´s t 检验和Dunn’s t 检验(校正p值),其中Nemenyi是完全随机设计多样本秩和检验多重比较的常用方法。

【通用方法】→【非参数检验】模块,可进行多个独立样本的Kruskal-Wallis检验以及Nemenyi多重比较。

【例4-18】随机抽取3种不同人群各10人,测定血浆总皮质醇值(102μmol/L,非正态),数据见表 4-52。请问 3 种不同人群的血浆总皮质醇测定值有无差别。案例数据来源于李晓松(2017),数据文档见“例4-18.xls”。

1) 数据与案例分析

“组别”为自变量,“皮质醇”为因变量。本例目的是比较多组样本均值的差异,优先考虑用单因素方差分析。经正态分布检验发现数据严重不满足正态分布,考虑使用多组独立样本Kruskal-Wallis检验。

2) 非参数检验

数据读入平台后,在平台界面左侧仪表盘中依次选择【通用方法】→【非参数检验】模块,如图 4-23所示,将“组别”拖拽至【X(定类)】,“皮质醇”拖拽至【Y(定量)】,本例为3组数据差异比较,当总体结果的显著性p值﹤0.05时,应继续做多重比较。这里指定一种多重比较的方法,在选项框中下拉,选择【Nemenyi法】多重比较,最后单击【开始分析】。

图 4-23 Kruskal-Wallis检验操作界面

3) 整体显著性检验——Kruskal-Wallis检验

由上表 4-53可知,Kruskal-Wallis检验H=18.130,p﹤0.001,可认为三种人群的血浆总皮质醇测定值的差异有统计学意义。由三个组的中位数大小可知,皮质醇增多症组中位数明显高于其他两组,而另外两组的中位数水平基本相当。各组两两之间的差异是否有统计学意义,尚需多重比较结果来判断。也可以通过比较三组人群总皮质醇测定值的箱线图进行直观观察,此处略。

4) Nemenyi法多重比较

Kruskal-Wallis 检验如果结论是多组分布差异显著,则需要进一步对各组间的分布位置差异做两两比较。【非参数检验】模块中务必需选择一个多重比较方法,本例选择【Nemenyi法】,结果见表 4-54。

本例有健康人组、单纯性肥胖组、皮质醇增多症组三个组别,两两组进行比较共需要对比3次,上表中的三行结果即组间两两比较的具体Nemenyi检验结果。

皮质醇增多症组与健康人组、单纯性肥胖组总皮质醇测定值均有显著差异(均p﹤0.01),尚不能认为单纯性肥胖组与健康人组的测定值存在差异(p=0.867﹥0.05)。

二、配对样本Wilcoxon检验

Wilcoxon符号秩和检验,还可用于配对样本差值的中位数和数字0的差异比较。目的是推断配对的两个相关样本所来自的两个总体中位数是否有差别。

例如对11份工业污水水样同时采用A法及B法进行测定,如果数据不满足正态性则可以通过配对样本Wilcoxon秩和检验推断两法测定结果有无差异。又例如专项减脂训练前与训练后肝功能理化指标数据,如果严重违反正态性条件则考虑采用Wilcoxon秩和检验。

从功能上讲,配对样本Wilcoxon检验与配对样本t检验完全一致;二者的区别在于数据(配对数据的差值)是否正态分布,如果数据正态分布,则使用配对样本t检验,反之则使用配对样本Wilcoxon检验。

【例4-19】研究长跑运动对增强普通高校学生的心功能效果,对某校15名男生进行测试,经过5个月的长跑锻炼后看其晨脉是否减少。锻炼前后的晨脉数据见表 4-55,试分析锻炼前后的晨脉间有无显著性的差异。数据来源于卢纹岱(2006),数据文档见“例4-19.xls”。

1) 数据与案例分析

配对资料不需要分组变量,锻炼前、锻炼后分别作为一个变量即可。本例目的在于比较两配对样本数据均值的差异,可选择配对样本t检验。假设长跑锻炼前后晨脉数据的差值不服从正态分布,此时配对样本t检验不再合适,可考虑非参数wilcoxon秩和检验替代t检验。

2) 秩和检验

读入数据后,依次选择【实验/医学研究】→【配对样本Wilcoxon】,如图 4-24所示,将“锻炼前”、“锻炼后”变量分别拖拽至【配对1(定量)】、【配对2(定量)】,最后单击【开始分析】。

图 4-24 配对样本Wilcoxon检验操作界面

3)结果解读

结果见表 4-56,Wilcoxon检验z=2.842,p=0.004﹤0.01,锻炼前后晨脉间差异显著,或锻炼前后晨脉间差异有统计学意义。

三、多相关样本Friedman检验

Friedman检验,也属于非参数检验方法,用于检测多个相关样本是否具有显著性差异的统计检验方法。在正态性条件不满足时,也用来作为单个组内因素的重复测量方差分析的替代方法。

例如8名受试对象在相同实验条件下分别接受4种不同频率声音的刺激,4种反应率数据均来自于同一个被试因此有相关性,如果不满足正态分布则可以利用Friedman检验判断4种刺激的反应率是否有差别。

【例4-20】在某项随机区组设计的动物实验中,不同种系雌性家兔注射不同剂量雌激素后子宫重量(g)如表 457,试比较4个剂量组雌性家兔子宫重量的差别有无统计学意义。数据来源于颜虹,徐勇勇(2010),数据文档见“例4-20.xls”。

1) 数据与案例分析

相关性数据资料的数据格式为宽型数据,4个剂量组的测定数据分别作为单个变量,依次为“YA”、“YB”、“YC”、“YD”,这4个变量间是有相关性的。

研究目的是比较4种剂量雌激素注射后家兔的子宫重量总体分布是否相同。采用【通用方法】→【正态性检验】功能,结果表明4组数据均服从正态分布。数据由宽型数据转换成长型数据(或重新录入为长型数据),再采用【通用方法】→【方差】功能进行方差齐性检验,F=3.47, p=0.03,按α=0.05水平,4个剂量组子宫重量的总体方差不齐。所以本例不宜采用方差分析,转而使用Friedman秩和检验。

2) Friedman检验

读入数据后,依次选择【实验/医学研究】→【多样本Friedman】模块,如图 425所示,将“YA”、“YB”、“YC”、“YD”4个变量拖拽至【分析项(定量)】框,勾选【Nemenyi两两比较】,最后单击【开始分析】。

图 4-25 多相关样本Friedman检验操作界面

3) 整体显著性检验

Friedman检验研究多个配对定量数据是否存在显著性差异,检验结果如下表 4-58所示。χ²=16.71,p﹤0.01,按α=0.01检验水平,认为注射不同剂量雌激素后,家兔子宫重量的差别有统计学意义。

4) 多重比较

按前面总结的方差分析流程(多组样本的非参数秩和检验类似流程),如果总体检验p值小于0.05,需要对组间差异进行多重比较。【多样本Friedman】模块默认提供的是Nemenyi法,本例多重比较结果见表 459。

4组数据任意两组进行配对比较,总共需要比较6次。剂量D与A、B相比,p值均小于0.05,差异有统计学意义,其他各组间无差异。结合中位数差值以及输出的箱线图统计图,结果表明剂量D组的家兔子宫重量高于其他三个组,与A和B组差异显著,但是D与C无差异。

以上内容摘自《SPSSAU科研数据分析方法与应用》第4章——差异关系研究,书中不仅涵盖了数据清理、统计分析和模型构建等内容,还提供了丰富的案例,以便于读者在实际研究中应用。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值