每周跟踪AI热点新闻动向和震撼发展 想要探索生成式人工智能的前沿进展吗?订阅我们的简报,深入解析最新的技术突破、实际应用案例和未来的趋势。与全球数同行一同,从行业内部的深度分析和实用指南中受益。不要错过这个机会,成为AI领域的领跑者。点击订阅,与未来同行! 订阅:https://rengongzhineng.io/
Meta近期在人工智能领域的野心不断扩展,从分子研究到虚拟化身均有涉足,但其前行之路也伴随着技术挑战与法律风险。
据知情人士透露,Meta已推迟原定于2025年春季发布的新一代Llama模型“Behemoth”。该模型原计划于4月推出,后延期至6月,而如今则再次推迟至秋季。此次延迟的主要原因在于内部工程师对模型训练结果表示失望。尽管Meta方面宣称“Behemoth”在多个基准测试中优于OpenAI与谷歌的同类产品,但公司内部对于其是否真正较Llama 2带来实质性改进存在持续争议。一些内部人员指出,在实际应用环境中,“Behemoth”的性能提升并不显著。
此项延期也引发了外界对Meta 2025年高达650亿美元的预计资本支出(CapEx)的进一步关注。更严重的是,在14位最初开发Llama模型的研究人员中,已有11人离职,这对Meta的技术公信力造成了不小的打击。
尽管在大语言模型领域遇挫,Meta在科学AI方面则动作频频。公司近日正式发布了“Open Molecules 2025”(OMol25)https://huggingface.co/facebook/OMol25 ,这是一个规模庞大的开放数据集,涵盖超过一亿条量子化学计算结果。据介绍,生成这一数据集共耗费60多亿计算小时,内容涵盖生物分子、有机物、金属配合物,并包含电子自旋、电荷状态、构象等丰富信息,旨在支持AI驱动的药物开发与材料科学研究。
与此同时,Meta还发布了UMA模型(Universal Molecular Architecture),这是一款基于图神经网络(GNN)的预测模型,采用线性专家混合架构(Mixture of Linear Experts)。据称,UMA在分子属性预测方面兼具高速度与高准确率,并在多个专业领域的基准测试中超越了现有专用模型。
此外,Meta还推出了一项名为“Adjoint Sampling”的新型生成方法。该方法以扩散建模为核心,可在样本数量极少的情况下探索分子构象空间,为分子模拟与结构生成提供了新的路径。
Meta官方账号“AI at Meta”于5月14日通过社交媒体宣布了这些发布内容,并强调其在分子属性预测、语言处理和神经科学等领域具有变革意义。值得一提的是,所有相关工具与模型均已通过Hugging Face与GitHub向研究社区开源。
尽管Meta目前在大型语言模型方面面临不小压力,其在科学研究领域的布局则显示出公司试图在AI应用中找到更多差异化与长期价值。这种策略能否成功扭转技术口碑并增强投资者信心,仍有待时间验证。