KS指标及其计算公式及意义
KS指标(Kolmogorov-Smirnov test)是一种常用的统计学指标,用于衡量两个概率分布之间的差异程度。它可以用于比较两个样本或模型的预测能力,广泛应用于金融风险评估、信用评分模型等领域。本文将介绍KS指标的计算公式及其意义,并提供使用Python计算KS指标的示例代码。
KS指标的计算公式如下:
KS = max|F1(x) - F2(x)|
其中,F1(x)和F2(x)分别为两个概率分布的累积分布函数(CDF),x为自变量。KS指标计算的是两个概率分布函数在所有可能取值点上的最大差异。
KS指标的意义在于,它能够直观地反映两个概率分布之间的差异程度。当KS值较大时,说明两个概率分布之间存在较大的差异,即它们的预测能力较强;反之,KS值较小则表示两个概率分布较为接近,预测能力较弱。
下面是使用Python计算KS指标的示例代码:
import numpy as np
from scipy import stats