KS指标及其计算公式及意义

287 篇文章 ¥59.90 ¥99.00
KS指标,或Kolmogorov-Smirnov test,是衡量两个概率分布差异的重要工具,广泛应用于金融风险评估和信用评分模型。其计算公式为KS = max|F1(x) - F2(x)|,其中F1和F2为两个分布的累积分布函数。当KS值较大时,表示分布差异显著,预测能力强;反之,则表示分布接近,预测能力弱。Python可以方便地用于计算KS指标,有助于模型性能评估和选择。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

KS指标及其计算公式及意义

KS指标(Kolmogorov-Smirnov test)是一种常用的统计学指标,用于衡量两个概率分布之间的差异程度。它可以用于比较两个样本或模型的预测能力,广泛应用于金融风险评估、信用评分模型等领域。本文将介绍KS指标的计算公式及其意义,并提供使用Python计算KS指标的示例代码。

KS指标的计算公式如下:

KS = max|F1(x) - F2(x)|

其中,F1(x)和F2(x)分别为两个概率分布的累积分布函数(CDF),x为自变量。KS指标计算的是两个概率分布函数在所有可能取值点上的最大差异。

KS指标的意义在于,它能够直观地反映两个概率分布之间的差异程度。当KS值较大时,说明两个概率分布之间存在较大的差异,即它们的预测能力较强;反之,KS值较小则表示两个概率分布较为接近,预测能力较弱。

下面是使用Python计算KS指标的示例代码:

import numpy as np
from scipy import stats

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值