为什么要推荐R语言? 人工智能时代的新人才,从基础开始,先学好R,成为数据科学家!

下面内容摘录自《用R探索医药数据科学》专栏文章的部分内容。栏目后续章节的文章将深入概括R语言在临床研究和新药创新领域的应用,填补了国内R教材中尚未广泛覆盖的部分内容。​​​​​​​1章1节:数据科学的发展历程,何 R 备受青睐及我们专栏的独特之处(更新20240822)-CSDN博客文章浏览阅读214次,点赞5次,收藏3次。数据科学的发展可以追溯到20世纪中期,当时计算机科学和统计学逐渐兴起,为数据分析提供了技术基础。同时,随着数据科学在临床数据分析和挖掘中的应用增多,临床数据科学成为一门跨学科的学科,结合临床医学、统计学和计算机技术。https://blog.csdn.net/2301_79425796/article/details/140439765

欢迎订阅我们专栏

.......前面部分请点击上面链接看原文(原文7198字)

为什么要推荐R语言?

第一大点,免费且开放的语言

首先,R语言的一个显著优势是它的免费和开源性。与SPSS、SAS,甚至Excel等商业软件相比,R完全免费。SPSS和SAS这些统计软件虽然功能强大,但通常价格昂贵,对于学生和学者来说,获取和使用这些软件的成本可能非常高。此外,我们常用的OFFICE软件的EXCEL也能进行数据分析,但是定期支付许可费用才能继续使用。

不仅如此,R语言拥有一个庞大而活跃的开源社区,全球的开发者和用户不断贡献代码和扩展包,形成了丰富的资源库。用户可以方便地找到所需的工具和文档,从简单的数据处理到复杂的统计分析,R语言几乎涵盖了所有可能的需求。

而且,由于R是开源的,这些资源通常也是免费的,这进一步减轻了用户的负担。同时,这意味着用户可以免费使用并分发代码,而不用担心版权问题。

第二大点,简单易学的R语言

R语言的语法设计相对简洁,特别适合那些没有编程背景的用户。与其他编程语言(如Python或Java)相比,R语言的语法更直观,特别是在处理统计分析时。例如,R的函数命名通常直接反映其功能,如mean()计算均值,sum()计算总和,plot()生成图表等,这使得初学者能够快速理解和应用。

此外,R语言的交互式环境使得用户可以立即查看代码的运行结果,这对新手来说非常有帮助。通过R的命令行接口,用户可以一步一步地执行代码,逐步理解每个步骤的作用。对于非计算机专业的用户,这种学习方式降低了学习曲线,使他们能够更快地掌握数据分析的基本技能。

第三大点,超强大的统计分析

R语言诞生于统计学界,自然拥有强大的统计分析能力。R的核心功能包括各种统计模型、数据处理、可视化工具等,几乎涵盖了所有常见的数据分析需求。对于那些需要进行本科或研究生论文的学生,R语言提供了丰富的统计函数和方法,可以轻松实现从数据清洗到高级统计建模的一整套流程。

R还拥有广泛的社区支持,大量的开源扩展包(如ggplot2dplyrcaret等)可以进一步扩展其功能。这些扩展包使得R可以非常简单地处理从基本统计分析到复杂的机器学习任务的各类工作。对于学术研究,R的统计能力不仅能帮助用户进行数据分析,还可以通过可视化工具生成高质量的图表,使得研究成果的展示更加直观。

R语言最初是为统计分析而设计的,至今仍然在这方面保持领先地位。无论是基础统计、回归分析、时间序列分析还是高级统计建模,R都能提供丰富的函数和包,帮助我们轻松实现各种统计分析,很简单的代码就能完成任务。

强大的数据可视化能力: R语言拥有ggplot2等强大的可视化包,可以生成高质量的图表和图形,使得数据可视化变得简单而直观。通过R,我们可以创建各种图表,如散点图、线形图、柱状图、热图等,帮助我们更好地理解和展示数据。如下面的图,我们都可以很简单地画出来。另外,我们还可以绘制动态的图形。

第四大点,无缝对接学术需求

对于需要撰写本科生论文、研究生论文、或者发表学术成果的用户来说,R的优势在于它与学术写作的无缝衔接。例如,R Markdown是一个非常实用的工具,它允许用户在同一文件中撰写文字和代码,并直接生成报告或论文。通过R Markdown,用户可以将数据分析、统计结果、图表和文字内容集成在一起,形成一个完整的学术文档。同时,R Markdown支持直接导出PDF、Word、HTML等多种格式,满足不同出版和提交需求。

Zotero是一款广泛使用的参考文献管理工具,能够帮助用户轻松地收集、组织和引用文献。对于学生和学者来说,使用Zotero可以大大简化文献管理的过程,而R语言与Zotero的集成更是如虎添翼。

第五大点,广泛的行业支持和兼容性

虽然R语言的设计初衷是用于统计分析,但它在多个行业中得到了广泛应用,包括金融、医学、社会科学、市场研究等。对于非计算机专业的用户,R不仅能够满足他们在学术研究中的需求,还能在未来的职业发展中提供重要的技能支持。

R语言的开放性和跨平台兼容性也是其受欢迎的原因之一。RStudio作为R语言的主要集成开发环境,提供了跨平台的支持,可以在Windows、macOS和Linux等操作系统上运行。这种跨平台兼容性使得无论用户使用何种操作系统,都可以轻松地安装和运行RStudio,体验一致的开发环境。同时,通过不同的扩展包,R与其他编程语言(如Python、SQL、Java等)同时使用,进一步增强其功能。

 ........

 ........................

在这里,你学到的并非仅仅是 R 的某一个技巧,而是能够从零开始,深入且系统地学习 R 语言。此外,本专栏每周至少定期更新三篇文章,每篇文章篇幅均在 5000 字以上,质量平均分更是高达 93 分。而且,对于已经发表的知识点,我们也会根据新的技术或理解及时进行更新,这是纸质版图书无法做到的。为了让更多的忠实粉丝和同学们享受到实惠,本专栏采用折扣定价策略。随着章节的不断完成,折扣力度会逐渐减小。所以,现在正是订阅的最佳时机!

https://blog.csdn.net/2301_79425796/category_12729892.html?spm=1001.2014.3001.5482

​​​​​

第一章:认识数据科学和R

1章1节:数据科学的发展历程,何 R 备受青睐及我们专栏的独特之处(更新20240822)-CSDN博客

1章2节:关于人工智能、机器学习、统计学连和机器学习、R 与 ChatGPT 的探究 (更新20240814)-CSDN博客

1章3节:R 语言的产生与发展轨迹(更新2024/08/14)-CSDN博客

1章4节:数据可视化, R 语言的静态绘图和 Shiny 的交互可视化演示(更新20240814)-CSDN博客

第二章:R的安装和数据读取

2章1节:R和RStudio的下载和安装(Windows 和 Mac)_rst语言选择哪个镜像-CSDN博客

2章2节:RStudio 四大区应用全解,兼谈 R 的代码规范与相关文件展示_rstudio的console和terminal-CSDN博客

2章3节:RStudio的高效使用技巧,自定义RStudio环境(更新20240823)_rstudio如何使用-CSDN博客

2章4节:用RStudio做项目管理,静态图和动态图的演示,感受ggplot2的魅力-CSDN博客

2章5节:认识和安装R的扩展包,什么是模糊搜索安装,工作目录和空间的区别与设置(​​​​​​​更新20240807 )-CSDN博客

2章6节:R的数据集读取和利用,如何高效地直接复制黏贴数据到R(​​​​​​​更新20240807 )_r语言 复制数据集-CSDN博客

2章7节:读写RDS,CSV,TXT,Excel,SPSS、SAS、Stata、Minitab等的数据文件(更新20240807)_r语言读取rds文件-CSDN博客

2章8节:一文学会 R Markdown 的文档核心操作,切记文末有R资源的分享_r markdown文件(.rmd)-CSDN博客

2章9节:认识R与数据库连接和网络爬虫,学会在R中使用SQL语言_sql和r语言-CSDN博客

2章10节:用 R 直接下载并分析 NHANES 数据库的数据,文末示例自创便捷下载函数(更新20240807)_nhanes数据分析-CSDN博客

第三章:认识数据

3章1节:数据的基本概念以及 R 中的数据结构、向量与矩阵的创建及运算-CSDN博客

3章2节:继续讲R的数据结构,数组、数据框和列表-CSDN博客

3章3节:R的赋值操作与算术运算_r里面的赋值-CSDN博客

3章4节:R的逻辑运算和矩阵运算-CSDN博客

3章5节:R 语言的循环与遍历函数全解析-CSDN博客

第四章:数据的预处理

4章1节:全面了解 R 中的数据预处理,通过 R 基本函数实施数据查阅_r数据预处理-CSDN博客

4章2节:从排序到分组和筛选,通过 R 的 dplyr 扩展包来操作-CSDN博客

4章3节:处理医学类原始数据的重要技巧,R语言中的宽长数据转换,tidyr包的使用指南-CSDN博客

4章4节:临床数据科学中如何用R来进行缺失值的处理_临床生存分析缺失值r语言-CSDN博客

4章5节:数据科学中的缺失值的处理,删除和填补的选择,K最近邻填补法-CSDN博客

4章6节:R的多重填补法中随机回归填补法的应用,MICE包的实际应用和统计与可视化评估-CSDN博客

4章7节:用R做数据重塑,数据去重和数据的匹配-CSDN博客

4章8节:用R做数据重塑,行列命名和数据类型转换-CSDN博客

4章9节:用R做数据重塑,增加变量和赋值修改,和mutate()函数的复杂用法_r语言如何在数据集中添加变量-CSDN博客

4章10节:用R做数据重塑,变体函数应用详解和可视化的数据预处理介绍-CSDN博客

4章11节:用R做数据重塑,数据的特征缩放和特征可视化-CSDN博客

4章12节:R语言中字符串的处理,正则表达式的基础要点和特殊字符-CSDN博客

4章13节:R语言中Stringr扩展包进行字符串的查阅、大小转换和排序-CSDN博客

4章14节:R语言中字符串的处理,提取替换,分割连接和填充插值_r语言替换字符串-CSDN博客

4章15节:字符串处理,提取匹配的相关操作扩展,和Stringr包不同函数的重点介绍和举例-CSDN博客

4章16节:R 语言中日期时间数据的关键处理要点_r语言 时刻数据-CSDN博客

第五章:定量数据的统计描述

5章1节:用R语言进行定量数据的统计描述,文末有众数的自定义函数-CSDN博客

5章2节:离散趋势的描述,文末1个简单函数同时搞定20个结果-CSDN博客

5章3节:在R语言中,从实际应用的角度认识假设检验-CSDN博客

5章4节:从R语言的角度认识正态分布与正态性检验-CSDN博客

5章5节:认识方差和方差齐性检验(三种方法全覆盖)-CSDN博客

5章6节:R语言中的t检验,独立样本的t检验-CSDN博客

5章7节:单样本t检验和配对t检验-CSDN博客

5章8节:方差分析(ANOVA)及其应用-CSDN博客

5章9节:组间差异的非参数检验,Wilcoxon秩和检验和Kruskal-Wallis检验-CSDN博客

第六章:定性数据的统计描述 

6章1节:定性数据的统计描述之列联表,文末有优势比计算介绍-CSDN博客

6章2节:认识birthwt数据集,EpiDisplay和Gmodels扩展包的应用-CSDN博客

6章3节:独立性检验,卡方检验,费希尔精确概率检验和Cochran-Mantel-Haenszel检验-CSDN博客​​​​​​​

6章4节:相关关系和连续型变量的Pearson相关分析-CSDN博客​​​​​​​

6章5节:分类型变量的Spearman相关分析,偏相关分析和相关图分析-CSDN博客

6章6节:相关图的GGally扩展包,和制表的Tableone扩展包-CSDN博客​​​​​​​

第七章:R的传统绘图

​​​​​​​7章1节:认识R的传统绘图系统,深度解析plot()函数和par()函数的使用-CSDN博客

7章2节:R基础绘图之散点图、直方图和概率密度图-CSDN博客

7章3节:R基础绘图之条形图和堆积条形图-CSDN博客

7章4节:饼图,箱线图和克利夫兰点图-CSDN博客

7章5节:散点矩阵图,与小提琴图、Cleveland 点图、马赛克图和等高图-CSDN博客

7章6节:用R进行图形的保存与导出,详细的高级图形输出,一文囊括大多数保存的各种问题,和如何批量保存不同情况的图形-CSDN博客

第八章:R的进阶绘图

8章1节:认识 ggplot2 扩展包,深度解析 qplot() 函数的使用-CSDN博客

 8章2节:深度讲解 ggplot2 的绘图步骤,理解其核心逻辑, 和 ggplot()函数-CSDN博客

 8章3节:用R来绘制医学地理图,文末有具体完整代码-CSDN博客

 8章4节:维恩图的认识与应用,和使用UpSet图-CSDN博客

 8章5节:用R绘制平行坐标图-CSDN博客

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

DAT | 数据科学和人工智能兴趣组

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值