独立性检验用于检验两个或多个分类变量是否独立。也就是说,它评估一个变量的分布是否与另一个变量无关,就是用于判断两个分类变量是否相互独立。在实际应用中,独立性检验广泛用于各种领域,以确定不同因素之间是否存在统计学上的关联。
一、独立性检验
在统计学中,两个变量独立的含义是一个变量的值不影响另一个变量的分布。如果两个变量不独立,那么我们说它们之间存在关联性。独立性检验的目的就是通过分析数据,判断两个分类变量之间是否存在这种统计学上的独立关系。
独立性检验(Test of Independence)是一类用于评估两个或多个分类变量之间是否存在统计学上显著关联的方法。根据不同的检验方法,独立性检验可以分为卡方检验、Fisher确切检验、和G检验等类型,适用于不同样本量和数据特征的分析场景。基于数据结构的分类可以分为二维列联表和多维列联表的独立性检验,前者是最常见的形式,而后者则用于分析多个分类变量之间的复杂关系。此外,根据检验目标,独立性检验可以分为完全独立性检验和部分独立性检验,以应对不同的分析需求。
<