在实际数据分析过程中,我们经常会遇到数据无法满足假设检验或方差分析的假设情况。通常,假设检验和方差分析要求数据呈正态分布,且组间方差齐性。但现实中的数据可能呈现出偏态分布,或在不同组之间存在显著的方差差异。这时,我们可以使用非参数检验方法来代替传统的参数检验方法。非参数检验不依赖于数据的具体分布形式,因此在处理不满足常规假设的数据时,非参数检验显得尤为重要。
一、非参数检验
非参数检验,又称分布自由检验,是一类不依赖于特定分布形式的统计检验方法。与参数检验相比,非参数检验不要求数据符合正态分布或方差齐性等条件,因此在处理数据分布不明确或样本量较小时特别有用。
非参数检验通常通过对数据进行排序或利用秩统计量来进行比较,而不是直接比较原始数据。它们的应用范围广泛,包括比较样本的中位数、检验两组数据是否来自同一分布等。常见的非参数检验包括Mann-Whitney U检验、Wilcoxon秩和检验、Kruskal-Wallis检验等。
非参数检验的应用场景