2篇7章4节:岭回归的原理和应用场景,并用R进行代码演示

在医学研究中,我们经常会用统计模型来预测疾病的风险、治疗的效果,或者某种生理指标的变化趋势。这些模型需要输入很多信息,比如病人的年龄、性别、体重、血压、血糖水平、基因类型等等,用来预测一个结果,比如是否患某种病、手术成功率,或者治疗后的恢复速度。但你有没有想过,如果我们输入的这些信息中,有些变量太过“相似”,会不会导致预测结果不可靠?答案是:会。而“岭回归”就是专门用来解决这个问题的一个统计方法。

一、认识岭回归

岭回归(Ridge Regression),又称为季霍诺夫正则化(Tikhonov Regularization),是由苏联数学家安德烈·季霍诺夫(Andrey Tikhonov)提出的一种回归分析方法。它主要用于处理多元线性回归模型中自变量之间高度相关的情况,也就是所谓的“多重共线性”问题。在许多领域,比如经济计量学、化学、工程学等,这种方法被广泛应用,尤其适合那些模型参数众多、变量之间关系复杂的情境。

岭回归的理论基础最早由统计学

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

R科学与人工智能

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值