在医学研究中,我们经常会用统计模型来预测疾病的风险、治疗的效果,或者某种生理指标的变化趋势。这些模型需要输入很多信息,比如病人的年龄、性别、体重、血压、血糖水平、基因类型等等,用来预测一个结果,比如是否患某种病、手术成功率,或者治疗后的恢复速度。但你有没有想过,如果我们输入的这些信息中,有些变量太过“相似”,会不会导致预测结果不可靠?答案是:会。而“岭回归”就是专门用来解决这个问题的一个统计方法。
一、认识岭回归
岭回归(Ridge Regression),又称为季霍诺夫正则化(Tikhonov Regularization),是由苏联数学家安德烈·季霍诺夫(Andrey Tikhonov)提出的一种回归分析方法。它主要用于处理多元线性回归模型中自变量之间高度相关的情况,也就是所谓的“多重共线性”问题。在许多领域,比如经济计量学、化学、工程学等,这种方法被广泛应用,尤其适合那些模型参数众多、变量之间关系复杂的情境。
岭回归的理论基础最早由统计学