2.3_两类错误率Neyman_Pearson决策与ROC曲线

两类错误率

  • 问题:是哪两类?

研究两类错误率,将样本分为阳性(正样本)和阴性(负样本);那么将样本分错就有两类情况,一是将阳性样本分成了阴性(即假阴);二是将阴性样本分成了阳性(假阳);

我们通过表格的形式来反应实际类别和预测的类别之间的关系:

阳性(实际)阴性(实际)
阳性(预测)真阳性(TP)假阳性(FP)
阴性(预测)假阳性(FN)真阴性(TN)

在这里错误的分类有两种,FP和FN。在这里如果我们统计假阳样本占总的阴性样本的比例,就得到了第一类错误率(type-I error):假阳性率= F P T N + F P = α \frac{FP}{TN+FP}=\alpha TN+FPFP=α
同理我们统计假阴性样本占总的阳性样本的比例,就得到了第二类错误率(type-II error):假阴性率= F N T P + F N = β \frac{FN}{TP+FN}=\beta TP+FNFN=β

对应的有两类错误率,我们也可以定义两类正确率,即特异度(Specificity)= S p = T N T N + F P = 1 − α S_p = \frac{TN}{TN+FP} = 1-\alpha Sp=TN+FPTN=1α ; 灵敏度(Sensitivity)= S n = T P T P + F N = 1 − β S_n = \frac{TP}{TP+FN} = 1-\beta Sn=TP+FNTP=1β ; S n 和 S p S_n和S_p SnSp用来评判分类结果在各类的正确性

其它分类效果评估指标

正确率(Accuracy):ACC = (TP+TN)/(TP+FP+TN+FN)
召回率(Recall):Rec = S n S_n Sn = TP/(TP+FN)
精度(Precision):Pre = TP/(TP+FP);表示预测的准不准
F度量(F-measure):F = 2Rec*Pre/(Rec+Pre);召回率和精度的调和平均

Neyman-Pearson决策

保证某一类错误率为一个固定的水平,在此前提下再考虑另一类错误率尽可能低。假设阳性代表有病,阴性代表没病。则第一类错误率:假阳性率,表示把没病的说成有病;第二类错误率:假阴性率,把有病的说成没病;显然这里的第二类错误率影响更严重,因为如果把有病说成没病,就会使病人错过进一步的治疗,按照最小风险贝叶斯决策的说法就是风险损失更大。
所以常需要保持假阴性率为一个固定的水平 σ 0 \sigma_0 σ0, 在此前提下再追求第一类错误率尽可能低。
ω 1 \omega_1 ω1类为阴性, ω 2 \omega_2 ω2类为阳性,错误率为
P ( e ) = { P ( ω 2 ∣ x ) x ∈ ω 1 P ( ω 1 ∣ x ) x ∈ ω 2 P(e) = \begin{cases} P(\omega_2|\mathbf{x}) \quad \mathbf{x} \in \omega_1 \\ P(\omega_1|\mathbf{x}) \quad \mathbf{x} \in \omega_2\end{cases} P(e)={P(ω2x)xω1P(ω1x)xω2

假设样本的类条件概率密度 P ( x ∣ ω ) P(\mathbf{x}|\omega) P(xω), 如下图所示,其中 R 1 R_1 R1 R 2 R_2 R2是决策区域。
在这里插入图片描述
图一

则定义错误率为
P ( e ) = P ( x ∈ R 1 , ω 2 ) + P ( x ∈ R 2 , ω 1 ) P(e) = P(\mathbf{x} \in R_1, \omega_2) + P(\mathbf{x} \in R_2, \omega_1) P(e)=P(xR1,ω2)+P(xR2,ω1)
= > = P ( x ∈ R 1 ∣ ω 2 ) P ( ω 2 ) + P ( x ∈ R 2 ∣ ω 1 ) P ( ω 1 ) => \quad = P(\mathbf{x} \in R_1|\omega_2)P(\omega_2) + P(\mathbf{x} \in R_2|\omega_1)P(\omega_1) =>=P(xR1ω2)P(ω2)+P(xR2ω1)P(ω1)
= > = P ( ω 2 ) ∫ R 1 P ( x ∣ ω 2 ) d x + P ( ω 1 ) ∫ R 2 P ( x ∣ ω 1 ) d x => \quad = P(\omega_2)\int_{R_1} P(\mathbf{x}|\omega_2)d\mathbf{x} + P(\omega_1)\int_{R_2} P(\mathbf{x}|\omega_1)d\mathbf{x} =>=P(ω2)R1P(xω2)dx+P(ω1)R2P(xω1)dx
= > = P ( ω 2 ) P 2 ( e ) + P ( ω 1 ) P 1 ( e ) (1) => \quad = P(\omega_2)P_2(e) + P(\omega_1)P_1(e) \quad \tag{1} =>=P(ω2)P2(e)+P(ω1)P1(e)(1)

其中, P 1 ( e ) P_1(e) P1(e)代表第一类错误率(假阳性率), P 2 ( e ) P_2(e) P2(e)代表第二类错误率(假阴性率)。

Neyman-Pearson决策准则为:
min ⁡ P 1 ( e ) s . t . P 2 ( e ) = σ 0 (2) \min P_1(e) \\ s.t. \quad P_2(e) = \sigma_0 \quad \tag{2} minP1(e)s.t.P2(e)=σ0(2)

解上述条件极值问题,采用拉格朗日乘子法,把上式的有约束极值问题转化为:
min ⁡ γ = P 1 ( e ) + λ ( P 2 ( e ) − σ 0 ) (3) \min \gamma = P_1(e) + \lambda(P_2(e) - \sigma_0) \quad \tag{3} minγ=P1(e)+λ(P2(e)σ0)(3)
= > γ = ∫ R 2 P ( x ∣ ω 1 ) d x + λ ( ∫ R 1 P ( x ∣ ω 2 ) d x − σ 0 ) (4) => \quad \gamma = \int_{R_2} P(\mathbf{x}|\omega_1)d\mathbf{x} + \lambda(\int_{R_1} P(\mathbf{x}|\omega_2)d\mathbf{x} - \sigma_0) \quad \tag{4} =>γ=R2P(xω1)dx+λ(R1P(xω2)dxσ0)(4)
又因为
∫ R 2 P ( x ∣ ω 1 ) d x = 1 − ∫ R 1 P ( x ∣ ω 1 ) d x (5) \int_{R_2} P(\mathbf{x}|\omega_1)d\mathbf{x} = 1 - \int_{R_1} P(\mathbf{x}|\omega_1)d\mathbf{x} \quad \tag{5} R2P(xω1)dx=1R1P(xω1)dx(5)
将其代入式(4)得:
γ = 1 − ∫ R 1 P ( x ∣ ω 1 ) d x + λ ∫ R 1 P ( x ∣ ω 2 ) d x − λ σ 0 \gamma = 1 - \int_{R_1} P(\mathbf{x}|\omega_1)d\mathbf{x} + \lambda \int_{R_1} P(\mathbf{x}|\omega_2)d\mathbf{x} - \lambda\sigma_0 γ=1R1P(xω1)dx+λR1P(xω2)dxλσ0
= > = 1 − λ σ 0 + ∫ R 1 [ λ P ( x ∣ ω 2 ) − P ( x ∣ ω 1 ) ] d x (6) => \quad = 1 - \lambda\sigma_0 + \int_{R_1}[\lambda P(\mathbf{x}|\omega_2)-P(\mathbf{x}|\omega_1)]d\mathbf{x} \quad \tag{6} =>=1λσ0+R1[λP(xω2)P(xω1)]dx(6)

由上图一可知, R 1 R_1 R1 R 2 R_2 R2由决策面 x = t \mathbf{x}=t x=t分割,所以 min ⁡ γ \min \gamma minγ,就是求解使 γ \gamma γ最小的t, γ \gamma γ是关于 λ \lambda λ和t的函数。
∂ γ ∂ λ = − σ 0 + ∫ R 1 P ( x ∣ ω 2 ) d x = 0 (7) \frac{\partial \gamma}{\partial \lambda} = -\sigma_0 + \int_{R_1}P(\mathbf{x}|\omega_2)d\mathbf{x} = 0 \quad \tag{7} λγ=σ0+R1P(xω2)dx=0(7)
∂ γ ∂ t = λ P ( x ∣ ω 2 ) − P ( x ∣ ω 1 ) = 0 (8) \frac{\partial \gamma}{\partial t} = \lambda P(\mathbf{x}|\omega_2) - P(\mathbf{x}|\omega_1) = 0 \quad \tag{8} tγ=λP(xω2)P(xω1)=0(8)
= > λ 0 = P ( x ∣ ω 1 ) P ( x ∣ ω 2 ) (9) => \lambda_0 = \frac{P(\mathbf{x}|\omega_1)}{P(\mathbf{x}|\omega_2)} \quad \tag{9} =>λ0=P(xω2)P(xω1)(9)

同时当 t = t 0 t=t_0 t=t0 R 1 R_1 R1 R 2 R_2 R2的决策面时, 使得式(8) λ P ( x ∣ ω 2 ) − P ( x ∣ ω 1 ) = 0 \lambda P(\mathbf{x}|\omega_2) - P(\mathbf{x}|\omega_1) = 0 λP(xω2)P(xω1)=0成立, 同时观察式(6),要使得 γ \gamma γ最小,那么 λ P ( x ∣ ω 2 ) − P ( x ∣ ω 1 ) \lambda P(\mathbf{x}|\omega_2) - P(\mathbf{x}|\omega_1) λP(xω2)P(xω1)应该为负,这样才能更小。

ROC曲线

如果把灵敏度 S n S_n Sn即真阳性率,作为纵坐标,把假阳性率作为横坐标,形成的曲线称为ROC曲线,曲线下的面积即AUC来定量的衡量方法的性能。人们总是希望真阳性率高,假阳性率低。

  • 19
    点赞
  • 22
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值