目录
前言
📅大四是整个大学期间最忙碌的时光,一边要忙着备考或实习为毕业后面临的就业升学做准备,一边要为毕业设计耗费大量精力。近几年各个学校要求的毕设项目越来越难,有不少课题是研究生级别难度的,对本科同学来说是充满挑战。为帮助大家顺利通过和节省时间与精力投入到更重要的就业和考试中去,学长分享优质的选题经验和毕设项目与技术思路。
🚀对毕设有任何疑问都可以问学长哦!
选题指导:
大家好,这里是海浪学长毕设专题,本次分享的课题是
🎯基于深度学习的水果质量检测与分类算法系统
设计思路
一、课题背景与意义
水果产业已经成为我国继粮食、蔬菜之后的第三大农业种植产业,是国内外市场前景广阔且具有较强国际竞争的优势产业。人工智能技术支持下的水果品质检测与分类技术对于水果生产、加工、运输和销售具有重要意义,尤其是在快节奏的"互联网+"环境下,水果品质检测与分类方法的性能和速度直接影响水果产业的经济效益和市场竞争力。
二、算法理论原理
2.1 卷积神经网络
YOLO是一种广泛应用于工业、交通、医疗和农业等领域的目标检测网络模型。2016年,Joseph Redmon等人首次提出了YOLO,随后相继提出了YOLOv2、YOLOv3、YOLOv4和YOLOv5等版本。YOLOv5在YOLOv4的基础上进行了参数优化调整,提高了检测速度。例如,在Tesla P100加速器上,YOLOv5可以实现每秒140帧的快速检测,满足工业生产线的实时检测要求。
根据不同的模型大小,YOLOv5推出了s、m、l和x四个不同网络深度和宽度的模型。其中,YOLOv5s是YOLOv5系列中深度最小、特征图宽度最小的模型。如图所示,YOLOv5s算法网络模型主要由输入端、骨干端、颈部端和头部端四个模块组成。
基于传统深度学习技术的水果检测方法仍有提升空间。YOLOv5具有检测精度较高、速度快和易部署等优势。该系统旨在为实际农业场景下的水果品质检测提供新的思路。
三、水果质检与分类检测的实现
3.1 数据集
为了构建数据集,我们使用现场拍摄和网络爬虫方法进行图像采集,以确保分类效果。数据集包括四类不同品质、形状和纹理的水果,通过照片覆盖的方式获取。具体的数据集构建步骤如下:
-
数据采集:实验数据集由网络数据和现场数据两部分组成。网络数据是通过爬虫工具从互联网获取的苹果、橘子、香蕉和梨等四种果实形状不同的水果图像。现场数据是通过相机或手机在果园和超市等地点拍摄得到的。需要注意的是,现场图像数据是在不同光照条件、角度和背景环境下拍摄的,因此需要从数据集中剔除像素不清晰以及果实严重遮挡的图像。
-
数据标注:使用LabelImg软件对图像数据进行标注,并以PascalVOC格式保存为XML文件,文件名与图像名保持一致。图2给出了苹果的标注示例。
-
数据分割:根据8:1:1的比例,将划分得到的2,190张图像分为训练集、验证集和测试集。
3.2 实验环境搭建
使用精确率(Precision)和召回率(Recall)作为水果分类任务的评价指标。精确率表示被正确判断为正类的样本占所有被判断为正类的样本的比例,召回率表示被正确判断为正类的样本占所有真实正类样本的比例。
3.2 实验及结果分析
在训练阶段,我们将模型的精确率、召回率、mAP_0.5和mAP_0.5:0.95进行可视化绘图,如图所示。观察到,当迭代次数小于200时,这些性能指标迅速上升。随着迭代次数超过200,各指标趋于稳定,模型的精确率和召回率保持在90%以上,平均精度均值为95.3%。因此,模型在训练阶段表现良好。
为了与其他模型进行比较,我们选择了YOLOv3、YOLOv3-spp、YOLOv3-tiny和YOLOv4-tiny这四种网络模型,并在相同的计算机环境和数据集上进行了实验。YOLOv5s方案在平均检测精度上达到了95.3%。与YOLOv3、YOLOv3-spp、YOLOv3-tiny和YOLOv4-tiny相比,我们提出的模型分别提高了3.7%、0.2%、13.1%和8.73%的性能。
具体而言,YOLOv5s在damaged_apple、damaged_orange、pear和damaged_banana这四个类别上表现最好,而YOLOv3-spp在apple、orange和banana这三个类别上表现最好,YOLOv3在damaged_pear类别上表现最好。这是因为YOLOv3和YOLOv3-spp采用了更大的特征提取模块,而YOLOv5s是一个轻量化的网络模型。而且YOLOv5s模型的训练时间推理时间和网络参数大小均明显优于其他模型
YOLOv5s在检测性能、训练时间、推理时间和网络参数大小等方面都优于传统的检测方法。它能够准确识别和定位不同品种的水果,并且具有占用内存小、推理时间短的特点。因此,有望将YOLOv5s部署到智能终端,实现对水果的实时在线检测。
部分代码如下:
import torch
import cv2
from PIL import Image
# 加载YOLOv5模型
model = torch.hub.load('ultralytics/yolov5', 'yolov5s')
# 设置使用的设备(CPU或GPU)
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
model.to(device).eval()
# 加载水果类别标签
fruit_labels = ['苹果', '香蕉', '橙子', '草莓', '葡萄']
# 加载并预处理图像
def preprocess_image(image):
image = image.convert('RGB')
image = torch.from_numpy(np.array(image)).float()
image /= 255.0
image = image.permute(2, 0, 1)
return image.unsqueeze(0).to(device)
# 进行水果质量检测与分类
def detect_and_classify_fruits(image):
image = preprocess_image(image)
# 使用YOLOv5进行目标检测
results = model(image)
# 获取检测结果
detections = results.pandas().xyxy[0]
# 提取水果类别和置信度
fruits = detections[detections['class'].isin(fruit_labels)]
fruit_labels = fruits['class'].tolist()
fruit_confidences = fruits['confidence'].tolist()
# 可根据需要对检测结果进行进一步处理或输出
return fruit_labels, fruit_confidences
# 加载并预处理待检测的水果图像
image_path = 'fruit_image.jpg'
image = Image.open(image_path)
# 进行水果质量检测与分类
fruit_labels, fruit_confidences = detect_and_classify_fruits(image)
# 输出检测结果
for label, confidence in zip(fruit_labels, fruit_confidences):
print(f"水果类型: {label}, 置信度: {confidence:.2f}")
创作不易,欢迎点赞、关注、收藏。
毕设帮助,疑难解答,欢迎打扰!