【毕业设计】基于深度学习的路面交通标志检测识别系统

本文介绍了基于深度学习的路面交通标志检测识别系统的设计,包括课题背景、图像增强的直方图均衡化技术、SKNet分类模型的原理和实现,以及实验数据集的构建、环境搭建和模型训练过程。
摘要由CSDN通过智能技术生成

目录

前言

设计思路

一、课题背景与意义

二、算法理论原理

2.1 图像增强

2.2 分类模型

三、检测的实现

3.1 数据集

3.2 实验环境搭建

3.3 实验及结果分析

最后


前言

       📅大四是整个大学期间最忙碌的时光,一边要忙着备考或实习为毕业后面临的就业升学做准备,一边要为毕业设计耗费大量精力。近几年各个学校要求的毕设项目越来越难,有不少课题是研究生级别难度的,对本科同学来说是充满挑战。为帮助大家顺利通过和节省时间与精力投入到更重要的就业和考试中去,学长分享优质的选题经验和毕设项目与技术思路。

        🚀对毕设有任何疑问都可以问学长哦!

         选题指导:

        最新最全计算机专业毕设选题精选推荐汇总

        大家好,这里是海浪学长毕设专题,本次分享的课题是

        🎯基于深度学习的路面交通标志检测识别系统

设计思路

一、课题背景与意义

        在现代社会中,路面交通标志的准确检测和识别对于交通安全和智能交通系统至关重要。然而,传统的图像处理方法在复杂场景下的性能受限,因此基于深度学习的路面交通标志检测识别系统成为了一个备受关注的研究领域。该系统利用深度学习和计算机视觉技术,能够自动、高效地检测和识别道路上的交通标志,为驾驶员提供实时的交通信息和警示,从而提高交通安全性和交通效率。

二、算法理论原理

2.1 图像增强

        图像对比度是指图像中不同灰度级之间的差异程度。过亮或过暗的图像会导致灰度差异范围较小,即对比度较低。这种低对比度的图像通常表现为可见性差、视觉效果差以及图像不清晰。直方图是图像的全局描述,可以反映图像中不同灰度级的分布情况。对于对比度差的图像,其直方图通常呈现较窄的分布,即灰度级集中在某个窄的范围内。这进一步证明了图像的低对比度问题。为了增强图像的可见性和视觉效果,可以对其进行直方图均衡化。直方图均衡化是一种将图像的灰度级映射为均匀分布的方法。通过对图像灰度分布进行重新调整,使得不同灰度级的像素在图像中更加均匀地分布,从而增强图像的对比度。通过直方图均衡化,低对比度的交通标志图像可以得到改善,使其灰度级更加均匀分布,从而提高图像的可见性和清晰度。这样的预处理步骤有助于后续的特征提取和分类任务,提高交通标志图像的识别和理解能力。

【毕业设计】基于深度学习的路面交通标志检测识别系统

        直方图均衡化是一种常用的图像增强方法,用于改善图像的对比度和可视化效果。它通过重新分布图像的灰度级,使得图像的直方图在整个灰度范围内更加均匀分布。下面是直方图均衡化的基本流程:

  •  灰度转换:将彩色图像转换为灰度图像,以便在单通道上进行直方图均衡化。
  • 计算直方图:对灰度图像计算像素值的直方图。直方图是一个表示不同灰度级的像素数量的分布图。
  • 计算累积分布函数(CDF):将直方图转换为累积分布函数,用于表示不同灰度级的像素在图像中的累积分布。
  • 像素映射:对于每个像素,将其灰度级映射为新的值,以便使得直方图的累积分布函数接近均匀分布。这可以通过将CDF值映射到新的灰度范围来实现。
  • 生成均衡化后的图像:使用映射后的灰度值替换原始图像中的每个像素的灰度值,生成均衡化后的图像。 

【毕业设计】基于深度学习的路面交通标志检测识别系统

2.2 分类模型

        SKNet分类模块是一个用于交通标志分类的网络模块。它以经过直方图均衡化增强的图像作为输入,并进行一系列的预处理和特征提取操作。下面是对SKNet分类模块的流程进行总结:

  •  图像预处理:对增强后的图像进行缩放,使其统一尺寸,并进行归一化和标准化处理。这些预处理操作有助于将图像输入网络中进行处理。
  • 特征提取:通过一系列的卷积和批归一化(Batch Normalization)操作,从图像中提取特征。首先使用3×3的卷积操作提取浅层特征。然后,通过三个相同阶段(stage1,stage2,stage3)进行进一步的特征提取。每个阶段包含三个SK单元。
  • SK单元:SK单元是SKNet中的关键组件。每个SK单元按顺序经过1×1的卷积操作、SK卷积操作和1×1的卷积操作。SK卷积是一种引入注意力机制的卷积操作,有助于模型学习特征间的相关性和重要性。SK单元的输入与其输出进行残差连接,解决深度模型的退化问题。对于尺寸不匹配的输入,采用1×1的卷积进行匹配。
  • ReLU激活函数:经过SK单元后,将输出经过ReLU激活函数操作,以引入非线性性质,然后输出至下一个网络层。
  • 池化和全连接:最后,经过池化操作和全连接操作,得到模型输出的交通标志具体类别。输出结果y属于K个类别中的一个。 

 【毕业设计】基于深度学习的路面交通标志检测识别系统 

        SK卷积在SKNet分类模块中起到关键作用,通过自适应调节感受野的大小,提取更加精细准确的特征。它主要包含分割、融合和选择三个过程:①进行分割过程,将输入特征图分别经过3x3卷积和5x5卷积进行处理,采用分组卷积的方式,其中卷积核的大小决定了感受野的大小。分割后得到两个分支的特征图,分别记为Û和U͂。②进行融合过程。将两个分支得到的特征图元素进行求和,得到融合后的特征图U。然后,通过全局平均池化操作得到各通道的统计信息s,其中每个通道的元素表示对应通道特征图的平均值。这些统计信息s反映了不同通道的重要性。③为了提高效率,使用全连接层对统计信息s进行降维,得到一个维度为d的向量z。这个过程使用了线性变换和非线性激活函数,其中β和δ分别表示线性变换和非线性激活函数。降维后的向量z包含了整体特征的综合信息。

三、检测的实现

3.1 数据集

        由于网络上没有现有的合适的数据集,本研究决定自己进行网络爬取,收集了大量路面交通标志的图片,并制作了一个全新的数据集。这个数据集包含了各种路面交通标志在不同场景和环境下的照片,涵盖了不同的天气条件、光照变化和视角变化。通过网络爬取的方式,研究者能够获取真实且多样化的数据,为研究提供更准确、可靠的数据基础。
        为了进一步增加数据样本的多样性和模型的泛化能力,研究者对自制的数据集进行了数据扩充。通过应用图像处理技术和数据增强方法,例如旋转、缩放、平移和加入噪声等,研究者生成了更多变体的图像样本。这种数据扩充方法能够增加数据集的规模,同时提升模型对于光照变化、角度变化和噪声干扰的鲁棒性。

3.2 实验环境搭建

        在进行SKNet分类模块的实验时,我们使用了一台配备Windows 10操作系统的计算机。该计算机配置了一颗Intel Xeon E5-2620 v4 @ 2.10 GHz处理器,以及NVIDIA GeForce RTX 2080 Ti显卡和96 GB内存。这样的高性能硬件配置为进行深度学习任务提供了强大的计算能力和存储容量。

3.3 实验及结果分析

路面交通标志检测识别系统的设计思路如下:

  •  数据预处理:首先,对收集到的路面交通标志图像进行预处理。这包括图像的大小调整、颜色空间转换、对比度增强等操作。预处理的目的是使输入图像具有一致的格式和质量,以提高后续深度学习模型的训练和识别性能。
  • 深度学习模型选择:根据任务的需求和数据集的特点,选择适合的深度学习模型进行交通标志的检测和识别。常用的模型包括卷积神经网络(CNN)、循环神经网络(RNN)和注意力机制等。根据实际情况,可以选择已有的预训练模型进行fine-tuning,或者自行设计和训练模型。
  • 模型训练与优化:使用标注好的训练集对选择的深度学习模型进行训练。训练过程中,采用合适的损失函数(如交叉熵损失)和优化算法(如随机梯度下降),并根据模型在验证集上的性能进行参数调整和模型优化。通过迭代训练,使模型能够准确地检测和识别各种路面交通标志。
  • 数据增强与模型泛化:为了提高模型的泛化能力和对不同场景的适应性,可以采用数据增强技术对训练集进行扩充。例如,随机旋转、平移、缩放、亮度调整等操作可以生成更多样化的训练样本,减少模型对输入图像变化的敏感性。
  • 模型评估与调优:使用标注好的测试集对训练好的模型进行评估,计算准确率、召回率、精确度等指标来评估模型的性能。根据评估结果,可以进行模型调优,如调整模型结构、超参数、数据增强策略等,以进一步提高模型的性能和鲁棒性。 

相关代码示例:

# 定义SKNet分类模块的网络结构
class SKNet(nn.Module):
    def __init__(self, num_classes):
        super(SKNet, self).__init__()
        # 定义网络的各个层
        self.conv1 = nn.Conv2d(3, 64, kernel_size=3, stride=1, padding=1)
        self.conv2 = nn.Conv2d(64, 128, kernel_size=3, stride=1, padding=1)
        self.pool = nn.MaxPool2d(kernel_size=2, stride=2)
        self.fc1 = nn.Linear(128 * 16 * 16, 512)
        self.fc2 = nn.Linear(512, num_classes)
        self.softmax = nn.Softmax(dim=1)

    def forward(self, x):
        # 定义前向传播过程
        x = F.relu(self.conv1(x))
        x = self.pool(x)
        x = F.relu(self.conv2(x))
        x = self.pool(x)
        x = x.view(-1, 128 * 16 * 16)
        x = F.relu(self.fc1(x))
        x = self.fc2(x)
        x = self.softmax(x)
        return x

# 创建SKNet模型实例
num_classes = 10  # 分类的类别数
sknet_model = SKNet(num_classes)

# 定义损失函数和优化器
criterion = nn.CrossEntropyLoss()
optimizer = torch.optim.SGD(sknet_model.parameters(), lr=0.01, momentum=0.9, weight_decay=0.0001)

实现效果图样例:

创作不易,欢迎点赞、关注、收藏。

毕设帮助,疑难解答,欢迎打扰!

最后

  • 20
    点赞
  • 14
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值