前言
📅大四是整个大学期间最忙碌的时光,一边要忙着备考或实习为毕业后面临的就业升学做准备,一边要为毕业设计耗费大量精力。近几年各个学校要求的毕设项目越来越难,有不少课题是研究生级别难度的,对本科同学来说是充满挑战。为帮助大家顺利通过和节省时间与精力投入到更重要的就业和考试中去,学长分享优质的选题经验和毕设项目与技术思路。
🚀对毕设有任何疑问都可以问学长哦!
选题指导:
大家好,这里是海浪学长毕设专题,本次分享的课题是
🎯基于深度学习的二手车价格预测系统
设计思路
一、课题背景与意义
当前我国二手车市场发展不完善,存在评估价值不统一的问题,给交易带来困难。随着二手车交易规模的增加,需要通过精准的二手车估价来保护消费者权益,促进市场稳定发展。通过对二手车数据指标的分析和预测,可以规范销售平台行为,解决价格评估问题,确保买卖双方得到公平合理的交易。这样的努力有助于建立行业准则,让卖家获得满意价格,买家购买物有所值的商品。
二、算法理论原理
2.1 SVM 模型
SVM(支持向量机)模型在二手车价格预测系统中可以发挥重要作用。SVM是一种监督学习方法,可用于分类和回归任务。在二手车价格预测中,可以将价格作为目标变量,其他与二手车相关的特征作为输入变量,利用SVM模型进行回归预测,从而预测出二手车的价格。
支持向量机(SVM)是一种常用的监督学习方法,广泛应用于分类和回归问题。它的主要思想是通过在特征空间中构建一个最优的超平面来进行分类或回归。SVM在处理高维数据和非线性问题上表现出色,并且对于小样本和噪声数据具有较好的鲁棒性。
SVM的核心思想是寻找一个最优的决策边界,即能够将不同类别的样本正确分开的超平面。这个超平面被称为分离超平面,其特点是离最近的训练样本点的距离最大化,这些样本点被称为支持向量。支持向量机可以通过不同的核函数来处理线性和非线性的分类和回归问题。
SVM的工作原理可以简要概括如下:
- 特征映射:将输入的特征映射到高维空间中,以便使数据更容易分离。
- 寻找最优超平面:在高维空间中寻找一个最优的超平面,使得离该超平面最近的样本点的距离最大化。这个过程可以通过求解一个凸优化问题来实现。
- 决策边界:通过最优超平面将不同类别的样本点分开,从而实现分类或回归任务。对于分类问题,SVM使用一个决策函数来预测新样本的类别。
from sklearn import svm
import numpy as np
# 准备训练数据
X_train = np.array([[1, 2], [3, 4], [5, 6], [7, 8]]) # 特征向量
y_train = np.array([0, 0, 1, 1]) # 类别标签
# 创建SVM分类器
clf = svm.SVC(kernel='linear')
# 训练模型
clf.fit(X_train, y_train)
# 准备测试数据
X_test = np.array([[2, 3], [6, 7]])
# 预测新样本的类别
predictions = clf.predict(X_test)
# 打印预测结果
for i, pred in enumerate(predictions):
print("样本", X_test[i], "的预测类别为", pred)
2.2 算法介绍
随机森林是一种组合分类器算法,由多棵决策树组成。它是通过将多个决策树进行组合,形成一个森林的方式来进行分类或回归任务。每个决策树是基于随机选择的输入特征和随机选择的样本子集进行训练的。通过对训练数据进行有放回的随机采样(称为自助采样)来构建多个决策树。每个决策树都被训练在不同的子集上,并且决策树之间是相互独立的。在分类问题中,随机森林的预测结果是通过统计所有决策树中的投票数来确定最终的预测结果。在回归问题中,随机森林的预测结果是所有决策树预测结果的平均值。
data = load_iris()
X = data.data
y = data.target
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
clf = RandomForestClassifier(n_estimators=100, random_state=42)
clf.fit(X_train, y_train)
随机森林具有以下优点:
- 高准确性:随机森林能够有效地减少过拟合,并提供良好的泛化能力,因此通常具有较高的准确性。
- 可扩展性:随机森林可以处理高维数据和大规模数据集,并且在特征数量很大时也能保持较好的性能。
- 可解释性:随机森林可以提供特征的重要性度量,用于解释模型的决策过程。
- 鲁棒性:随机森林对于无关特征和噪声数据的存在具有较好的鲁棒性,能够处理各种类型的数据。
梯度提升树是一种集成学习算法,通过组合多个弱学习器(通常是决策树)来构建一个强大的预测模型。梯度提升树是通过迭代的方式逐步优化模型的预测能力,每一步都试图减少模型的残差。通过逐步拟合残差来构建多个弱学习器,并将它们组合起来形成一个更强大的模型。每个新的弱学习器都是在之前模型的残差上进行训练,以最小化模型在训练集上的损失函数。在每一步中,梯度提升树使用梯度下降的方法来更新模型的参数,使得模型在每一步中朝着更小的残差方向前进。
GBDT构造新特征的思想是通过训练GBDT模型来创建新的特征向量,其中特征向量的每个元素对应于GBDT模型中树的叶子节点。如果一个样本位于某棵决策树的叶子节点上,则该节点的值为1,其他节点的值为0。这样构造的新特征向量的长度为GBDT模型中所有树包含的叶子节点数之和。通过将这些新特征向量与原始数据特征结合起来,可以用来训练预测模型。这种结合的方式可以提供更多的信息,从而可能大大提升预测效果。由于新特征向量的取值是0或1,它们表示样本在每棵树的叶子节点上的位置,因此可以看作是对原始数据特征的一种编码。这种编码方式能够捕捉到GBDT模型中对于样本的非线性特征学习能力。
三、检测的实现
3.1 数据集
由于网络上没有现有的合适的数据集,我决定自己进行数据收集,并制作了一个全新的数据集,用于二手车价格预测的研究。这个数据集包含了各种二手车的照片以及与其相关的特征和信息,如品牌、型号、年份、里程数、车况等。通过网络收集和现场拍摄,我能够获取真实的二手车情景和多样的车况,这将为我的研究提供更准确、可靠的数据。有助于建立准确的二手车价格预测模型,为二手车买卖方提供决策支持,并促进二手车市场的健康发展。
数据扩充是一种通过对现有数据进行变换和操作来生成新样本的技术,可用于解决数据不足的问题并提升模型的泛化能力。对于二手车价格预测的自制数据集,常见的数据扩充方法包括图像旋转、翻转、缩放、裁剪,以及亮度、对比度和色彩的调整,同时还可以添加噪声和进行数据平移。这些技术能够生成更多样的数据样本,增加数据集的多样性,提高模型的鲁棒性。在进行数据扩充时,需保持数据的真实性和可解释性,并结合领域知识和专业经验进行合理的操作。通过数据扩充,二手车价格预测研究可以获得更准确、可靠的数据,为该领域的发展做出积极贡献。
def data_augmentation(image_path, output_path, augmentations):
# 读取图像
image = Image.open(image_path).convert('RGB')
width, height = image.size
for _ in range(augmentations):
if np.random.random() < 翻转概率:
image = image.transpose(Image.FLIP_LEFT_RIGHT)
rotation = np.random.randint(-旋转角度, 旋转角度)
image = image.rotate(rotation)
scale = np.random.uniform(*缩放范围)
image = image.resize((int(width * scale), int(height * scale)))
3.2 实验环境搭建
搭建实验环境是进行实验和研究的基础,需确保计算机硬件满足需求,选择适当的操作系统和Python版本,并安装所需的机器学习和深度学习框架、数据库和数据处理工具。选择合适的IDE或编辑器,并根据需要安装GPU驱动和CUDA。准备适当的数据集,并进行测试和验证,确保环境和安装正确。
3.3 模型训练
通过分析和学习大量的二手车数据,模型能够根据输入的车辆特征和市场信息,预测出二手车的合理价格范围。利用深度学习算法,模型可以捕捉到数据中的复杂模式和非线性关系,从而提高价格预测的准确性。模型训练流程如下:
- 数据收集:从各种来源收集二手车的相关数据,包括车辆特征(如品牌、型号、年份、里程等)、市场行情、成交价格等。
- 数据预处理:对收集的数据进行清洗、整理和预处理,包括缺失值处理、特征选择、数据归一化等。
- 构建深度学习模型:选择适合的深度学习架构,如卷积神经网络(CNN)、循环神经网络(RNN)或长短期记忆网络(LSTM)等,根据问题的特点进行定制。
- 模型训练:使用预处理后的数据对模型进行训练,通过反向传播算法优化模型的参数,使其能够更好地拟合数据。
- 模型评估:使用验证集或测试集对训练好的模型进行评估,计算准确率、均方误差等指标,以评估模型的性能。
- 超参数调优:根据模型评估结果,调整模型的超参数,如学习率、正则化参数等,以提高模型的性能。
- 模型部署:将训练好的模型部署到实际应用中,为用户提供实时的二手车价格预测服务。
import pandas as pd
from sklearn.model_selection import train_test_split
from sklearn import svm
from sklearn.feature_selection import RFE
from sklearn.feature_selection import f_classif
data = pd.read_csv('your_data.csv')
X = data.drop('price', axis=1)
y = data['price']
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
model = svm.SVR(kernel='linear')
rfe = RFE(model, n_features_to_select=5)
fit = rfe.fit(X_train, y_train)
print("特征重要性评估结果:")
print(fit.feature_importances_)
optimized_features = [feature for feature, importance in zip(X_train.columns, fit.feature_importances_) if importance > 0]
model = svm.SVR(kernel='linear')
model.fit(X_train[optimized_features], y_train)
y_pred = model.predict(X_test[optimized_features])
print("预测结果:")
print(y_pred)
创作不易,欢迎点赞、关注、收藏。
毕设帮助,疑难解答,欢迎打扰!