目录
大四是整个大学期间最忙碌的时光,一边要忙着准备考研,考公,考教资或者实习为毕业后面临的就业升学做准备,一边要为毕业设计耗费大量精力。大四的同学马上要开始毕业设计,对选题有疑问可以问学长哦(见文末)!
以下整理了适合不同方向的计算机专业的毕业设计选题
🚀对毕设有任何疑问都可以问学长哦!
更多选题指导:
大家好,这里是海浪学长毕设选题专场,本次分享的是
🎯 人工智能专业2025最新毕业设计选题汇总
毕设选题
人工智能专业的毕业设计中,研究方向涵盖了多个前沿领域,包括深度学习与计算机视觉、自然语言处理、强化学习、智能推荐系统、物联网与边缘计算、以及人机交互等。在深度学习与计算机视觉方向,学生可以研究物体检测、图像分割和人脸识别等应用,常用技术框架包括TensorFlow、Keras和PyTorch;自然语言处理研究如何实现文本分类、情感分析和机器翻译等任务,涉及的工具有Transformers和NLTK;强化学习则关注如何通过与环境的交互来优化决策过程,常用的框架有OpenAI Gym和Ray RLlib;智能推荐系统方向可研究基于用户行为的个性化推荐算法,涉及的技术包括协同过滤和深度学习推荐模型;
以下是一些选题题目的样例,希望可以为大家更好地理解具体的研究方向:
- 基于深度学习的铁路轨道障碍物识别系统
- 基于机器视觉的可疑人员跟踪与识别系统
- 基于卷积神经网络的动态QR码识别系统
- 基于最少帧差法图像识别的智能监控系统
- 基于深度学习的农作物病害视觉识别系统
- 基于排序代理锚损失的深度度量学习算法
- 基于时间卷积和图注意力网络的电力系统
- 基于知识图谱与深度涟漪网络的推荐系统
- 基于数据-机理联合驱动的制冷空调系统
- 基于深度学习与工业服务器的云检测系统
- 基于Linux的疫情期间宿舍门禁系统
- 基于卷积神经网络的矿井提升机制动系统
- 基于深度学习的CSNS加速器预警系统
- 基于前馈神经网络电子病历辅助诊断系统
- 基于WAMP架构的Web在线考试系统
- 基于深度学习方法的移动端舌象分割系统
- 基于YOLOv5s的草莓病害识别系统
- 基于深度学习的文本情感聊天机器人系统
- 基于深度学习的自动避障及语音提示系统
- 基于卷积神经网络的摄像机姿态感知系统
- 基于集成深度置信网络的精细化电力系统
- 基于深度学习的函数发生器远程校准系统
- 基于AI辅助的可扩展视频语义通信系统
- 基于YOLOv8的柑橘病虫害识别系统
- 基于深度视觉感知的智能车辅助决策系统
- 基于深度学习的行为识别技术在电力系统
- 基于深度学习算法的烈性犬检测提醒系统
- 基于深度学习的安全帽佩戴检测方法研究
- 基于深度学习的动车转向架螺栓防松检测
- 基于深度学习的驾驶员吸烟检测算法研究
- 基于深度学习的虹膜检测与分割方法研究
- 基于深度学习的隐裂牙裂纹检测方法研究
- 基于深度学习的建筑物震害检测方法研究
- 基于深度学习的DGA域名检测方法研究
- 基于深度学习的单阶段目标检测算法研究
- 基于深度学习的文本检测与识别算法研究
- 基于深度学习的图像分布外检测方法研究
- 基于深度学习的织物缺陷轻量型检测系统
- 基于深度学习的宫颈癌细胞检测方法研究
- 基于深度学习的口罩人脸检测方法的研究
- 基于深度学习的驾驶员异常行为检测系统
- 基于深度学习的压缩机异常声音检测技术
- 基于深度学习的铝型材表面缺陷检测研究
- 基于深度学习的水下生物分类与检测研究
- 基于深度学习方法的PCB瑕疵检测系统
- 基于深度学习的肿瘤细胞识别与检测研究
- 基于深度学习的夜间车辆检测方法的研究
- 基于机器视觉的聚合物粒料杂质检测研究
- 基于深度学习的羊脸细粒度特征的身份识别
- 基于深度学习的玉米种子图像分类识别研究
- 基于深度学习的XLPE电缆绝缘缺陷识别
- 基于深度学习的公路路面破损检测识别方法
- 基于深度学习的工业数字仪表识别算法研究
- 基于深度学习算法的大型飞机电缆故障识别
- 基于AI深度学习的车辆识别智能管理系统
- 基于深度学习的电子通信信号调制识别系统
- 基于深度学习的真实复杂矿区环境人脸识别
- 基于深度学习的电子通信设备异常信号识别
- 基于深度学习的网络传输数据异常识别方法
- 基于深度学习和度量学习的行人再识别算法
- 基于深度学习的三维实时人脸识别技术研究
- 基于深度学习的交通袭击攻击方式智能识别
- 基于深度学习的SAR目标识别DSP设计
- 基于深度学习的工程结构损伤识别研究进展
- 基于深度学习激光熔覆层树枝晶的形貌识别
- 基于深度学习的肾小球病理图像识别与分类
- 基于深度学习的指针式仪表检测与识别研究
- 基于云雾结合的工件深度学习识别问题研究
- 基于深度学习的电力安全作业实体识别方法
- 基于深度学习与泰勒展开的吸毒成瘾者识别
- 基于深度学习的物流货柜自动识别模型研究
- 基于深度学习的卷烟条包激光喷码识别技术
- 基于深度学习的公路隧道衬砌病害识别方法
- 基于视觉深度学习的烟支缺陷特征识别系统
- 基于知识图谱和图嵌入的个性化学习资源推荐
- 基于协同过滤的电子商务个性化推荐算法分析
- 基于协同过滤的电子商务个性化推荐算法研究
- 基于顾客需求模式的挖掘:电子商务推荐系统
- 基于网络数据挖掘的个性化电子商务推荐系统
- 基于协同过滤的认知训练游戏个性化推荐系统
- 基于用户动态偏好的电子商务个性化推荐系统
- 基于协同过滤算法的学习资源个性化推荐系统
- 基于个性化推荐的大学生创新创业资源库系统
- 基于协同过滤个性化商品推荐的网络商城系统
- 基于信任偏好的电子商务个性化项目推荐研究
- 基于二元客户信任关系的个性化推荐技术研究
- 基于用户行为的商品潜在客户挖掘与精准推荐
- 基于注意力机制的商品推荐算法的研究与实现
- 基于MapReduce的个性化课程推荐系统
- 基于大数据的3D虚拟学习环境个性化推荐系统
- 基于B/S三层架构的电子商务个性化推荐系统
- 基于关系影响的加权知识图谱卷积网络推荐模型
- 基于Web日志和商品分类的协同过滤推荐系统
- 基于知识图谱的贵州省旅游景点个性化推荐系统
- 基于OBUIM的电子商务个性化推荐模型研究
- 针对电子商务的Web数据挖掘技术的应用研究
- 基于数据挖掘技术的电子商务旅游线路推荐系统
- 基于知识图谱与个性化推荐的科研团队管理系统
- 基于“读者画像”的图书馆个性化信息推荐系统
- 基于方面级用户偏好迁移的跨领域推荐算法研究
- 基于多属性评分的电子商务个性化推荐算法研究
海浪学长作品示例:
选题迷茫
毕设开题阶段,同学们都比较迷茫该如何选题,有的是被要求自己选题,但不知道自己该做什么题目比较合适,有的是老师分配题目,但题目难度比较大,指导老师提供的信息和帮助又比较少,不知道从何下手。与此同时,又要准备毕业后的事情,比如考研,考公,实习等,一边忙碌备考或者实习,一边还得为毕设伤透脑筋。
选题的重要性
毕设选题其实是重中之重,选题选得是否适合自己将直接影响到后面的论文撰写和答辩,选题不当很可能导致后期一系列的麻烦。
1.选题难易度
选题不能太难,也不能太简单。选题太难可能会导致知识储备不够项目做不出来,选题太难,则可能导致老师那边不同意开题,很多同学的课题被一次次打回来也是这个原因之一。
2.工作量要够
除非是算法类或者科研性项目,项目代码要有一定的工作量和完整度,否则后期论文的撰写会很难写,因为论文是要基于项目写的,如果项目的工作量太少,又缺乏研究性的东西,则会导致很难写出成篇幅的东西。
更多选题指导
🚀 创作不易,欢迎点赞、收藏、关注!
最后
🏆🏆🏆为帮助大家节省时间,如果对开题选题,或者相关的技术有不理解,不知道毕设如何下手,都可以随时来问学长,我将根据你的具体情况,提供帮助。