前言
图像预处理是机器学习和计算机视觉任务中至关重要的一环,其核心目的是通过对原始图像进行优化和调整,提升模型性能、降低噪声干扰、增强关键特征,并适应模型的输入要求。以下是分领域的详细说明:
一、通用目的
1.1 数据标准化
目的
目的:统一输入数据的分布,避免因像素值范围差异(如0-255或0-1)导致模型训练不稳定。
实现
#归一化到 [0, 1]
image_normalized = image / 255.0
#标准化(均值中心化 + 方差归一化)
image_standardized = (image - mean) / std
1.2 噪声抑制
目的
目的:消除图像中的随机噪声(如高斯噪声、椒盐噪声),提升特征提取的鲁棒性。
实现
高斯滤波
高斯滤波:cv2.GaussianBlur()
中值滤波
中值滤波:cv2.medianBlur()
双边滤波
双边滤波:保留边缘的同时去噪,cv2.bilateralFilter()
1.3 尺寸统一化
目的
目的:确保所有输入图像尺寸一致,适配模型输入层(如CNN要求固定尺寸)。
实现
resized_image = cv2.resize(image, (width, height)