个人学习笔记6-1:动手学深度学习pytorch版-李沐

#深度学习# #人工智能# #神经网络#

现代卷积神经网络

7.1 深度卷积神经网络(AlexNet)

7.1.1 学习表征

7.1.2 AlexNet

AlexNet使用了8层卷积神经网络,并以很大的优势赢得了2012年ImageNet图像识别挑战赛。这里提供的是一个稍微精简版本的AlexNet,去除了当年需要两个小型GPU同时运算的设计特点。

AlexNet和LeNet的设计理念非常相似,但也存在显著差异。
1. AlexNet比相对较小的LeNet5要深得多。AlexNet由八层组成:五个卷积层、两个全连接隐藏层和一个全连接输出层。
2. AlexNet使用ReLU而不是sigmoid作为其激活函数。

             

            

同一个图片对比如下图:

AlexNet通过暂退法(4.6节)控制全连接层的模型复杂度,而LeNet只使用了权重衰减。为了进一步扩充数据,AlexNet在训练时增加了大量的图像增强数据,如翻转、裁切和变色。这使得模型更健壮,更大的样本量有效地减少了过拟合。

import torch
from torch import nn
from d2l import torch as d2l

net = nn.Sequential(
    # 这里使用一个11*11的更大窗口来捕捉对象。
    # 同时,步幅为4,以减少输出的高度和宽度。
    # 另外,输出通道的数目远大于LeNet
    nn.Conv2d(1, 96, kernel_size=11, stride=4, padding=1), nn.ReLU(),#分别输入通道数,输出通道数,卷积核大小---
    nn.MaxPool2d(kernel_size=3, stride=2),
    # 减小卷积窗口,使用填充为2来使得输入与输出的高和宽一致,且增大输出通道数
    nn.Conv2d(96, 256, kernel_size=5, padding=2), nn.ReLU(),
    nn.MaxPool2d(kernel_size=3, stride=2),
    # 使用三个连续的卷积层和较小的卷积窗口。
    # 除了最后的卷积层,输出通道的数量进一步增加。
    # 在前两个卷积层之后,汇聚层不用于减少输入的高度和宽度
    nn.Conv2d(256, 384, kernel_size=3, padding=1), nn.ReLU(),
    nn.Conv2d(384, 384, kernel_size=3, padding=1), nn.ReLU(),
    nn.Conv2d(384, 256, kernel_size=3, padding=1), nn.ReLU(),
    nn.MaxPool2d(kernel_size=3, stride=2),
    nn.Flatten(),
    # 这里,全连接层的输出数量是LeNet中的好几倍。使用dropout层来减轻过拟合
    nn.Linear(6400, 4096), nn.ReLU(),
    nn.Dropout(p=0.5),#暂退法
    nn.Linear(4096, 4096), nn.ReLU(),
    nn.Dropout(p=0.5),
    # 最后是输出层。由于这里使用Fashion-MNIST,所以用类别数为10,而非论文中的1000
    nn.Linear(4096, 10))

构造一个高度和宽度都为224的单通道数据,来观察每一层输出的形状。

X = torch.randn(1, 1, 224, 224)
for layer in net:
    X=layer(X)
    print(layer.__class__.__name__,'output shape:\t',X.shape)

结果输出:

7.1.3 读取数据集

这里使用的是Fashion‐MNIST数据集,Fashion‐MNIST图像的分辨率(28 × 28像素)低于ImageNet图像。为了解决这个问题,我们将它们增加到224 × 224(通常来讲这不是一个明智的做法,但在这里这样做是为了有效使用AlexNet架构)。这里需要使用d2l.load_data_fashion_mnist函数中的resize参数执行此调整。

batch_size = 128
train_iter, test_iter = d2l.load_data_fashion_mnist(batch_size, resize=224)

7.1.4 训练AlexNet

与LeNet相比,这里的主要变化是使用更小的学习速率训练,这是因为网络更深更广、图像分辨率更高,训练卷积神经网络就更昂贵。

lr, num_epochs = 0.01, 10
d2l.train_ch6(net, train_iter, test_iter, num_epochs, lr, d2l.try_gpu())

结果输出:(训练来自于移动九天NVIDIA V100 虚拟化 CPU 2核 内存 16GNVIDIA V100 虚拟化 CPU 2核 内存 16G)

7.2 使用块的网络(VGG)

7.2.1 VGG块

经典卷积神经网络的基本组成部分是下面的这个序列:
1. 带填充以保持分辨率的卷积层;
2. 非线性激活函数,如ReLU;
3. 汇聚层,如最大汇聚层。
而一个VGG块与之类似,由一系列卷积层组成,后面再加上用于空间下采样的最大汇聚层。

发展结论:

在下面的代码中,定义了一个名为vgg_block的函数来实现一个VGG块。

函数有三个参数,分别对应于卷积层的数量num_convs、输入通道的数量in_channels 和输出通道的数量out_channels.

import torch
from torch import nn
from d2l import torch as d2l


def vgg_block(num_convs, in_channels, out_channels):
    layers = []
    for _ in range(num_convs):
        layers.append(nn.Conv2d(in_channels, out_channels,
                                kernel_size=3, padding=1))
        layers.append(nn.ReLU())
        in_channels = out_channels
    layers.append(nn.MaxPool2d(kernel_size=2,stride=2))
    return nn.Sequential(*layers)

7.2.2 VGG网络

与AlexNet、LeNet一样,VGG网络可以分为两部分:第一部分主要由卷积层和汇聚层组成,第二部分由全连接层组成。结构对比如下:

VGG神经网络连接 图7.2.1的几个VGG块(在vgg_block函数中定义)。其中有超参数变量conv_arch。该变量指定了每个VGG块里卷积层个数和输出通道数。下面的代码实现了VGG‐11。可以通过在conv_arch上执行for循环来简单实现。由于该网络使用8个卷积层和3个全连接
层,因此它通常被称为VGG‐11。

#设置超参数(卷积层个数,输出通道数)
conv_arch = ((1, 64), (1, 128), (2, 256), (2, 512), (2, 512))
#vgg-11
def vgg(conv_arch):
    conv_blks = []
    in_channels = 1
    # 卷积层部分
    for (num_convs, out_channels) in conv_arch:
        conv_blks.append(vgg_block(num_convs, in_channels, out_channels))
        in_channels = out_channels

    return nn.Sequential(
        *conv_blks, nn.Flatten(),
        # 全连接层部分
        nn.Linear(out_channels * 7 * 7, 4096), nn.ReLU(), nn.Dropout(0.5),
        nn.Linear(4096, 4096), nn.ReLU(), nn.Dropout(0.5),
        nn.Linear(4096, 10))

net = vgg(conv_arch)

 构建一个高度和宽度为224的单通道数据样本,以观察每个层输出的形状。

X = torch.randn(size=(1, 1, 224, 224))
for blk in net:
    X = blk(X)
    print(blk.__class__.__name__,'output shape:\t',X.shape)

结果输出:

上述代码每个块的高度和宽度减半,最终高度和宽度都为7。最后再展平表示,送入全连接层处理。

7.2.3 训练模型

由于VGG‐11比AlexNet计算量更大,因此构建了一个通道数较少的网络,足够用于训练Fashion‐MNIST数据集。

ratio = 4
small_conv_arch = [(pair[0], pair[1] // ratio) for pair in conv_arch]#通道数除以4
net = vgg(small_conv_arch)


lr, num_epochs, batch_size = 0.05, 10, 128
train_iter, test_iter = d2l.load_data_fashion_mnist(batch_size, resize=224)
d2l.train_ch6(net, train_iter, test_iter, num_epochs, lr, d2l.try_gpu())

结果输出:(训练来自于移动九天NVIDIA V100 虚拟化 CPU 2核 内存 16GNVIDIA V100 虚拟化 CPU 2核 内存 16G,显存7.68G)

7.3 网络中的网络(NiN)

LeNet、AlexNet和VGG都有一个共同的设计模式:通过一系列的卷积层与汇聚层来提取空间结构特征;然后通过全连接层对特征的表征进行处理。AlexNet和VGG对LeNet的改进主要在于如何扩大和加深这两个模块。或者,可以想象在这个过程的早期使用全连接层。然而,如果使用了全连接层,可能会完全放弃表征的空间结构。网络中的网络(NiN)提供了一个非常简单的解决方案:在每个像素的通道上分别使用多层感知机。

7.3.1 NiN块

NiN块以一个普通卷积层开始,后面是两个1 × 1的卷积层。这两个1 × 1卷积层充当带有ReLU激活函数的逐像素全连接层。第一层的卷积窗口形状通常由用户设置。随后的卷积窗口形状固定为1 × 1。

代码实现如下:

import torch
from torch import nn
from d2l import torch as d2l


def nin_block(in_channels, out_channels, kernel_size, strides, padding):
    return nn.Sequential(
        nn.Conv2d(in_channels, out_channels, kernel_size, strides, padding),
        nn.ReLU(),
        nn.Conv2d(out_channels, out_channels, kernel_size=1), nn.ReLU(),
        nn.Conv2d(out_channels, out_channels, kernel_size=1), nn.ReLU())

7.3.2 NiN模型

NiN使用窗口形状为11×11、5×5和3×3的卷积层,输出通道数量与AlexNet中的相同。每个NiN块后有一个最大汇聚层(池化层),汇聚窗口形状为3 × 3,步幅为2。NiN和AlexNet之间的一个显著区别是NiN完全取消了全连接层。NiN使用一个NiN块,其输出通道数等于标签类别的数量。最后放一个全局平均汇聚层(global average pooling layer),生成一个对数几率(logits)。NiN设计的一个优点是,它显著减少了模型所需参数的数量。然而,在实践中,这种设计有时会增加训练模型的时间。

net = nn.Sequential(
    nin_block(1, 96, kernel_size=11, strides=4, padding=0),#灰度图所以输入通道为1
    nn.MaxPool2d(3, stride=2),
    nin_block(96, 256, kernel_size=5, strides=1, padding=2),
    nn.MaxPool2d(3, stride=2),
    nin_block(256, 384, kernel_size=3, strides=1, padding=1),
    nn.MaxPool2d(3, stride=2),
    nn.Dropout(0.5),
    # 标签类别数是10
    nin_block(384, 10, kernel_size=3, strides=1, padding=1),
    nn.AdaptiveAvgPool2d((1, 1)),
    # 将四维的输出转成二维的输出,其形状为(批量大小,10),且池化后形状为1x1
    nn.Flatten())

创建一样样本,测试:

X = torch.rand(size=(1, 1, 224, 224))
for layer in net:
    X = layer(X)
    print(layer.__class__.__name__,'output shape:\t', X.shape)

结果输出:

7.3.3 训练模型

使用Fashion‐MNIST来训练模型。训练NiN与训练AlexNet、VGG时相似。

lr, num_epochs, batch_size = 0.1, 10, 128
train_iter, test_iter = d2l.load_data_fashion_mnist(batch_size, resize=224)
d2l.train_ch6(net, train_iter, test_iter, num_epochs, lr, d2l.try_gpu())

结果输出:(训练来自于移动九天NVIDIA V100 虚拟化 CPU 2核 内存 16GNVIDIA V100 虚拟化 CPU 2核 内存 16G,显存只有7.68G)

7.4 含并行连结的网络(GoogLeNet)

在2014年的ImageNet图像识别挑战赛中,一个名叫GoogLeNet (Szegedy et al., 2015)的网络架构大放异彩。GoogLeNet吸收了NiN中串联网络的思想,并在此基础上做了改进。

7.4.1 Inception块

在GoogLeNet中,基本的卷积块被称为Inception块(Inception block)。Inception块由四条并行路径组成。前三条路径使用窗口大小为1 × 1、3 × 3和5 × 5的卷积层,从不同空间大小中提取信息。中间的两条路径在输入上执行1 × 1卷积,以减少通道数,从而降低模型的复杂性。第四条路径使用3 × 3最大汇聚层,然后使用1 × 1卷积层来改变通道数。这四条路径都使用合适的填充来使输入与输出的高和宽一致,最后我们将每条线路的输出在通道维度上连结,并构成Inception块的输出。
在Inception块中,通常调整的超参数是每层输出通道数。

注:1x1卷积提取通道信息,3x3、5x5、maxpool提取空间信息

注:白色框主要是降维,压缩通道大小。蓝色主要是抽取信息(通道和空间)。5x5卷积计算量最大,留的通道数最少。

代码实现如下:

import torch
from torch import nn
from torch.nn import functional as F
from d2l import torch as d2l


class Inception(nn.Module):
    # c1--c4是每条路径的输出通道数
    def __init__(self, in_channels, c1, c2, c3, c4, **kwargs):#c1、c2、c3、c4为每条path上的通道数。
        super(Inception, self).__init__(**kwargs)
        # 线路1,单1x1卷积层
        self.p1_1 = nn.Conv2d(in_channels, c1, kernel_size=1)
        # 线路2,1x1卷积层后接3x3卷积层
        self.p2_1 = nn.Conv2d(in_channels, c2[0], kernel_size=1)
        self.p2_2 = nn.Conv2d(c2[0], c2[1], kernel_size=3, padding=1)
        # 线路3,1x1卷积层后接5x5卷积层
        self.p3_1 = nn.Conv2d(in_channels, c3[0], kernel_size=1)
        self.p3_2 = nn.Conv2d(c3[0], c3[1], kernel_size=5, padding=2)
        # 线路4,3x3最大汇聚层后接1x1卷积层
        self.p4_1 = nn.MaxPool2d(kernel_size=3, stride=1, padding=1)
        self.p4_2 = nn.Conv2d(in_channels, c4, kernel_size=1)

    def forward(self, x):
        p1 = F.relu(self.p1_1(x))
        p2 = F.relu(self.p2_2(F.relu(self.p2_1(x))))
        p3 = F.relu(self.p3_2(F.relu(self.p3_1(x))))
        p4 = F.relu(self.p4_2(self.p4_1(x)))
        # 在通道维度上连结输出,批量大小维度处dim=0,通道维度处dim=1
        return torch.cat((p1, p2, p3, p4), dim=1)

7.4.2 GoogLeNet模型

GoogLeNet一共使用9个Inception块和全局平均汇聚层的堆叠来生成其估计值。Inception块之间的最大汇聚层可降低维度。第一个模块类似于AlexNet和LeNet,Inception块的组合从VGG继承,全局平均汇聚层避免了在最后使用全连接层。

许多种类的 Inception 网络:

Inception-BN(v2) - 添加批量归一化
Inception-V3  - 修改了初始块
用多个 3 x3 卷积替换 5 x5
1 x7 7 x1 卷积替换 5 x5
1 x3 3 x1 卷积替换 3 x3
通常用更深的堆
Inception - V4  - 添加残差块连接。

Inception块用4条有不同超参数的卷积层和池化层的路来抽取不同的信息,它的一个主要优点是模型参数小,计算复杂度低。GoogleNet使用了9个Inception块,是第一个达到上百层的网络。

GoogLeNet模型代码实现:(逐一实现GoogLeNet的每个模块)

#第一个模块使用64个通道、7 × 7卷积层。
b1 = nn.Sequential(nn.Conv2d(1, 64, kernel_size=7, stride=2, padding=3),
                   nn.ReLU(),
                   nn.MaxPool2d(kernel_size=3, stride=2, padding=1))
#第二个模块使用两个卷积层:第一个卷积层是64个通道、1 × 1卷积层;第二个卷积层使用将通道数量增加三倍的3 × 3卷积层。这对应于Inception块中的第二条路径。
b2 = nn.Sequential(nn.Conv2d(64, 64, kernel_size=1),
                   nn.ReLU(),
                   nn.Conv2d(64, 192, kernel_size=3, padding=1),
                   nn.ReLU(),
                   nn.MaxPool2d(kernel_size=3, stride=2, padding=1))
#第三个模块串联两个完整的Inception块。
b3 = nn.Sequential(Inception(192, 64, (96, 128), (16, 32), 32),
                   Inception(256, 128, (128, 192), (32, 96), 64),
                   nn.MaxPool2d(kernel_size=3, stride=2, padding=1))
#第四模块更加复杂,它串联了5个Inception块
b4 = nn.Sequential(Inception(480, 192, (96, 208), (16, 48), 64),
                   Inception(512, 160, (112, 224), (24, 64), 64),
                   Inception(512, 128, (128, 256), (24, 64), 64),
                   Inception(512, 112, (144, 288), (32, 64), 64),
                   Inception(528, 256, (160, 320), (32, 128), 128),
                   nn.MaxPool2d(kernel_size=3, stride=2, padding=1))
#第五模块包含输出通道数为256 + 320 + 128 + 128 = 832和384 + 384 + 128 + 128 = 1024的两个Inception块。
b5 = nn.Sequential(Inception(832, 256, (160, 320), (32, 128), 128),
                   Inception(832, 384, (192, 384), (48, 128), 128),
                   nn.AdaptiveAvgPool2d((1,1)),
                   nn.Flatten())

net = nn.Sequential(b1, b2, b3, b4, b5, nn.Linear(1024, 10))



#GoogLeNet模型的计算复杂,而且不如VGG那样便于修改通道数。为了使Fashion‐MNIST上的训练短小精悍,
我们将输入的高和宽从224降到96,这简化了计算。
X = torch.rand(size=(1, 1, 96, 96))
for layer in net:
    X = layer(X)
    print(layer.__class__.__name__,'output shape:\t', X.shape)

结果输出:

7.4.3 训练模型

使用Fashion‐MNIST数据集来训练我们的模型。在训练之前,我们将图片转换为96 × 96分辨率。

lr, num_epochs, batch_size = 0.1, 10, 128
train_iter, test_iter = d2l.load_data_fashion_mnist(batch_size, resize=96)
d2l.train_ch6(net, train_iter, test_iter, num_epochs, lr, d2l.try_gpu())

结果输出:(训练来自于移动九天NVIDIA V100 虚拟化 CPU 2核 内存 16GNVIDIA V100 虚拟化 CPU 2核 内存 16G,7.68G显存)

  • 25
    点赞
  • 27
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值