机器学习(一)

### 1. 课程内容

- **监督学习**:这是机器学习的一种类型,其中模型在带有标签的数据上进行训练。标签是已知的输出,比如图像的分类标签、房价预测等。
- **线性模型**:这包括线性回归和线性分类。线性回归用于预测连续值(如房价),而线性分类用于分类任务(如垃圾邮件分类)。
- **感知器和多层感知器(MLP)**:感知器是最简单的神经网络模型,而MLP则是包含多个隐藏层的神经网络。
- **反向传播**:这是训练神经网络的一种算法,通过计算梯度来优化模型参数。
- **梯度下降优化**:这是一个迭代优化算法,用于最小化损失函数。
- **卷积神经网络(CNNs)**:主要用于图像处理任务。
- **多类分类和支持向量机(SVMs)**:用于解决多分类问题,SVM是一个强大的分类器。
- **机器偏差和模型验证**:包括评估模型的公平性和偏差。
- **生成模型**:这些模型可以生成新的数据样本,例如生成图像或文本。

### 2. 机器学习基本概念

- **机器学习的定义**:机器学习是通过提供示例而不是编写明确的代码来指定程序的过程。换句话说,机器学习模型通过从数据中学习模式来进行预测或决策。
- **例子**:面部识别(如Facebook的自动标记)、机器翻译(如Google翻译)、智能游戏(如AlphaGo)、医疗成像(如癌症检测)。

### 3. 机器学习任务示例

- **面部识别**:识别图像中的人脸。
- **机器翻译**:将一种语言翻译成另一种语言。
- **智能游戏**:通过学习策略来玩游戏。
- **医疗成像**:分析医疗图像来诊断疾病。
- **假新闻生成**:生成虚假新闻文章。
- **语音识别**:将语音转换为文本。
- **艺术风格迁移**:将一种艺术风格应用到图像上。

### 4. 机器学习的主要组成部分

- **数据**:包括训练数据和测试数据。训练数据用于训练模型,测试数据用于评估模型性能。
- **模型**:这是一个函数,用于将输入数据映射到输出。模型的形式可以是线性回归、神经网络等。
- **损失函数**:用于衡量模型预测的准确性。常见的损失函数有均方误差(用于回归)和交叉熵损失(用于分类)。
- **优化**:通过优化算法(如梯度下降)来找到最佳的模型参数,以最小化损失函数。

### 5. 不同类型的学习

- **监督学习**:训练数据包含期望的输出。例如,房价预测中的历史房价和对应的房屋特征。
- **无监督学习**:训练数据不包含期望的输出。例如,客户分群中没有给定的分群标签。
- **弱监督或半监督学习**:训练数据包含少量的期望输出。例如,标注了一部分数据的图像分类任务。
- **强化学习**:模型通过与环境的交互获得奖励。例如,机器人学习如何走路。

### 6. 线性回归

- **定义**:线性回归用于预测一个连续值。模型假设输出是输入特征的线性组合。
- **任务示例**:天气预测,即根据历史数据预测未来的气温。
- **目标**:找到一个模型,使其在测试数据上的预测误差最小。

### 7. 损失函数选择

- **L2损失(均方误差)**:用于回归任务,度量预测值与真实值之间的平方误差。
- **L1损失**:度量预测值与真实值之间的绝对误差。
- **0-1损失**:用于分类任务,度量分类错误的比例。

### 8. 线性分类

- **定义**:线性分类用于将数据分类为不同类别。模型假设类别是输入特征的线性组合。
- **感知器**:一个简单的线性分类模型。训练过程中,感知器根据错误分类的样本来更新模型参数。
- **0-1损失函数**:用于衡量分类错误的比例。
- **支持向量机(SVM)**:一种强大的分类算法,通过最大化类别间的间隔来找到最佳分类边界。

### 9. 额外内容

- **线性代数**:包括矩阵和向量的基本操作,这些是理解机器学习算法的基础。
- **微积分**:包括导数和梯度,用于优化损失函数。

这节课的重点在于理解监督学习中的线性模型,包括线性回归和线性分类,以及如何通过优化损失函数来训练模型。这些概念是进一步学习更复杂的机器学习算法的基础。

  • 3
    点赞
  • 8
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值