多模态大模型:技术原理与实战 国内外多模态大模型对比
关键词:多模态大模型, 技术原理, 实战应用, 国内外对比, 语义理解, 推理能力, 跨模态融合
1. 背景介绍
1.1 问题由来
近年来,随着深度学习技术的快速发展,多模态大模型(Multi-modal Large Models, MLMs)在人工智能领域取得了突破性进展。多模态大模型通过结合图像、语音、文本等多种模态的数据,能够学习到更为丰富的表征和知识,显著提升了模型在视觉、语音、自然语言处理等领域的综合能力。然而,随着模型复杂度的增加,多模态大模型的训练、存储和推理都面临巨大的挑战。如何在高效利用多模态数据的同时,保证模型性能和推理效率,成为当前研究的重要课题。
1.2 问题核心关键点
多模态大模型的研究聚焦于如何有效融合多模态数据,提升模型的语义理解能力和推理能力。具体包括:
- 多模态数据的预处理与融合:如何对多模态数据进行预处理,并设计有效的模型融合机制。
- 跨模态对齐与转换:如何在不同模态之间建立语义对齐,实现跨模态的信息转换。
- 多模态学习与迁移:如何在多模态数