心率血氧采集/老人摔倒检测/健康检测/智能手环 看这里

本文介绍了使用STM32单片机和传感器模块(MPU6050、MAX30102)构建的老人健康监测系统,能检测心率、血氧并实现老人摔倒报警功能。系统通过OLED屏幕实时显示数据,并在检测到跌倒时触发蜂鸣器报警。提供了系统框图、原理图和元器件清单等详细信息。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

系列一:心率血氧采集/老人摔倒检测/健康检测/智能手环

第一个:基于STM32的老人健康检测系统(基础版)       

持续更新,欢迎关注!!!  

当代社会,老年人群健康安全监护的需求日益增加,老年人跌倒检测的研究成为社会关注热点。故文章设计了一种基于单片机的跌倒检测报警系统,单片机作为控制芯片、MPU6050传感器作为检测模块以及蜂鸣器模块报警。使用MAX30102采集心率和血氧,在OLED屏幕上显示 

一、视频演示 

### 心率血氧采集技术及其实现方法 心率血氧饱和度的采集通常依赖于光学传感技术和信号处理算法。以下是关于心率血氧采集的核心技术及其实现方式: #### 1. 光学测量原理 心率血氧数据可以通过光电容积描记法(Photoplethysmography, PPG)来获取[^2]。PPG 是一种无创的生物医学信号检测技术,通过发射特定波长的光线穿透皮肤并反射回来,利用光吸收量的变化推导出血流动力学特征。 - **红光与红外光的选择** 血液中的氧气含量会影响其对不同波长光线的吸收特性。具体来说,氧合血红蛋白 (HbO₂) 和还原血红蛋白 (Hb) 对红光 (约 660nm) 和近红外光 (约 940nm) 的吸光系数存在差异。因此,通过交替发送这两种波长的光源,并分析透射或反射回的光强度变化,可以计算出血液中的氧浓度[^3]。 - **脉搏波形提取** 当心脏收缩泵送血液时,血管体积会发生周期性的扩张和缩小,这种波动会引起接收到的光强随之改变。通过对这些微弱信号进行放大、滤波以及数字化转换后得到原始 PPG 波形。 #### 2. 数据采集硬件架构 在实际应用中,需要一套完整的硬件平台完成生理参数的感知与传输过程。以下是一个典型的设计方案描述: - **传感器模块** - 使用 MAX30102 这样的集成化芯片作为前端探测单元,它内部包含了 LED 发光源、光电二极管接收阵列以及预置增益调节电路等功能部件。 - **主控处理器** - 基于 STM32 微控制器构建核心运算框架,负责执行复杂的数学建模任务并将最终结果呈现给用户界面[^1]^。例如,在本案例里提到的 “血压/血氧/心率/心电” 四合一模组即采用了此类架构。 - **通信接口** - 蓝牙 DA14580 提供无线连接能力以便同步至移动终端应用程序上进一步展示更多维度健康指标图表等附加价值服务. #### 3. 算法流程概述 为了提高测量精度并减少环境干扰因素的影响,软件部分需实施一系列针对性优化措施: - **噪声抑制** - 应用带通滤波器去除高频电子噪音及低频运动伪迹成分;同时考虑动态场景下的补偿机制以维持稳定性能表现. - **特征点定位** - 定位每轮心跳对应的峰值位置从而精确统计单位时间内发生的次数形成即时速率反馈. - **SpO₂ 计算模型** - 结合 R 比值定义公式 \(R=\frac{AC_{red}}{DC_{red}} / \frac{AC_{IR}}{DC_{IR}}\) 来估算目标个体当前动脉血氧水平百分比数值: ```python def calculate_spo2(ac_red, dc_red, ac_ir, dc_ir): r_ratio = (ac_red / dc_red) / (ac_ir / dc_ir) spo2 = -45.06 * r_ratio**2 + 30.35 * r_ratio + 94.72 return min(max(spo2, 70), 100) # Clamp value between 70% and 100% ``` --- ###
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值