深度学习基础(损失函数)

损失函数

损失函数(Loss Function)在机器学习和深度学习中扮演着至关重要的角色,它用来衡量模型预测值与真实值之间的差异,是优化算法的核心。通过最小化损失函数,可以使模型的预测结果更接近真实值,从而提高模型的性能。

以下是损失函数的一些重要特点和作用:

  1. 衡量预测误差:损失函数用来衡量模型输出与真实标签之间的差异或误差。通过定义合适的损失函数,可以指导模型学习如何调整参数以减小误差。

  2. 优化目标:在训练过程中,优化算法的目标通常是最小化损失函数。通过梯度下降等优化算法,模型会不断调整参数以降低损失函数的值。

  3. 不同任务使用不同损失函数:不同的任务和模型可能需要使用不同的损失函数。例如,回归问题通常使用均方误差(MSE),分类问题通常使用交叉熵损失(Cross Entropy Loss)或对数损失(Log Loss)。

  4. 影响模型训练和泛化能力:选择合适的损失函数可以影响模型的训练效果和泛化能力。一些损失函数对异常值敏感,一些损失函数可以帮助模型更好地泛化到未见过的数据。

  5. 正则化和损失函数:有时候会将正则化项结合到损失函数中,形成带有正则化的损失函数,以避免过拟合。

在机器学习和深度学习中,损失函数用于衡量模型预测值与真实值之间的差异,是优化算法的关键部分。以下是一些常见的损失函数:

  1. 均方误差(Mean Squared Error,MSE)

    其中,𝑦𝑖​ 是真实值,𝑦^i 是模型预测值,𝑛 是样本数量。MSE适用于回归问题(线性回归)。

  2. 交叉熵损失(Cross Entropy Loss)

    • 二分类交叉熵损失

    • 多分类交叉熵损失

    其中,𝑦𝑖 是真实标签的概率分布,𝑦^𝑖 是模型预测的概率分布,𝐶 是类别数。交叉熵损失常用于分类问题。

  3. 对数损失(Log Loss)

    对数损失也是二分类问题中常用的损失函数,特别适用于逻辑回归模型。

  4. Hinge Loss

    Hinge Loss通常用于支持向量机(SVM)等模型,特别适用于分类问题。

 逻辑回归的损失函数

为了预测输出值和实际值有多接近,我们用预测值和实际值的平方差或者它们平方差的一半,但是逻辑回归的优化目标不是凸优化(找到多个局部最优值),我们需要寻找全局最优值:

 当y = 1时,损失函数为L=-log(\hat{y})\hat{y}尽可能大(因为sigmoid函数【激活函数】取值范围【0,1】,导致\hat{y}无限接近于1)才能使得L尽可能得小;

当y = 0时,损失函数为L=-log(1-\hat{y})\hat{y}尽可能小(因为sigmoid函数【激活函数】取值范围【0,1】,导致\hat{y}无限接近于0)才能使得L尽可能得小。

由此定义算法的代价函数是对𝑚个样本的损失函数求和然后除以m:

 小编持续更新中,有问题欢迎指出~

  • 6
    点赞
  • 5
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值