深度学习Loss function之Softmax中的矩阵求导

本文详细探讨了在深度学习中,针对Softmax损失函数的矩阵求导过程。首先介绍了Softmax函数及其损失函数的概念,然后通过推导展示了如何从损失函数的梯度df过渡到权重矩阵W的梯度dW,以此加深对反向传播的理解。最后,提供了与CS231n课程相关的Python代码实现链接。
摘要由CSDN通过智能技术生成

最近在重温CS231n的Assignment,采用SGD进行参数更新,在back propagation计算gradient时经常涉及到矩阵运算的的“求导”,在许多代码中该步骤仅需进行一次矩阵乘法,对其实现背后的推导没有进行说明,自己只有照抄死记硬背,但是毕竟只有明白背后的原理才能举一反三,在遇到其他需要对矩阵进行求导的情况时能够自己解决,因此今天我试着推导了一下,并且希望记录下来方便以后查阅:

首先简单介绍下Softmax:

假设在神经网络的最后一层输出为f(N,C),N表示train data的数目,C表示种类的数量,f[i,j]可以理解为第i个train data在j类的分数,而Softmax将以f为输入,然后计算各个train data属于j类的概率,再计算Loss(一种对Softmax的解释)。Softmax的Loss function为:

                                

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值