上节课我们简单介绍了系统的分类、拉氏变换、如何用拉氏变换解决微分方程、反拉氏变换、如何用反拉氏变换得到微分形式的解。
还提到了一个零初始条件——即系统在初始时各物理量都为0,可以大大简化高阶微分的计算。
这一节我们回应什么是传递函数,他是如何来的?为什么需要传递函数?有什么性质?
为什么要传递函数?
引言提到:传递函数和微分方程一样,都是反映输入输出之间的关系。
系统的微分方程是由 输入输出量 和他们的 各阶导数 还有一些 系统参数 构成的,
它的结构决定了它就是比较复杂的:
上一节拉普拉斯变换中提到的两个例子呈现,微分方程的表达含有大量微分项:
看起来还不是很复杂是不是,那我们给出最一般的微分方程形式:
这就给研究带来了很大的困难。而比起细究各个微分项发生了什么样的变换,我们更关心输入和输出间的关系,
也就是说,我们希望得到一个输出关于输入的函数,比如下面这个系统,可以写作 输出C(s)/输入R(s)=K 的形式。
还记得这个微分方程拉氏变换后的解是什么形式吗?
没错,可以将一侧的输出/输入转化为单个X(s)代表的形式!
一般的微分方程左右都有项,而通过拉氏变换我们可以都整理成含R(s) C(s)的多项式。
从拉氏变换到传递函数
流程如下:
①拉氏变换
首先应用拉氏变换以及微分定理,将微分方程的高阶导以及参数项进行拉氏变换。
但由于高阶微分项拉普拉斯变换后会产生一堆零处的高阶导数,因此我们引入“零初始条件”:
②零初始条件
在零初始条件下,f在零处各阶导数都等于0,消去了,只剩下:
③提出输入输出
最后将拉氏变换后的C(s) R(s)提出得到:
此时,等式两边都能提出C(s)和R(s),作为输出和输入,从而构建出我们需要的形式——传递函数。
传递函数分子是输出项,包含了输出的各阶微分项拉氏变换后的状态,承载了系统的所有输出状态;
分母是输入项,包含了输入的各阶微分拉氏变换后的状态,承载了系统在“零初始条件”的输入状态。
注意:求解微分方程时可能涉及零处高阶导数的运算,但传递函数一定是“零初始条件”下的拉氏变换!可以理解为传递函数就是将微分方程拉氏变换后,进行输入输出分离,再令零处的各阶导数为零得到的。
以上,我们捋清了传递函数是如何通过拉普拉斯变换得到的,接下来我们正式引出传递函数的定义。
传递函数
举几个例子,由此我们可以求得开头提到的RLC电流的传递函数以及阻尼系统的传递函数:
步骤其实就是利用拉氏变换解微分方程,只是在变换后加入零初始条件进行化简,接着将左右两侧提出输入量的拉氏变换R(s)和输出量的拉氏变换C(s),二者作比得到G(s)。
传递函数的性质:
Ⅰ 传递函数的极点就是微分方程的特征根
在一般微分方程的拉氏变换中我们知道,传递函数可以写作多项式,就可以被写成零极式,即分母和分子都写为单项式相乘的形式。
其中,使得分子为零的点就叫零点,使得分母为零的点就叫极点。
——多项式
——零极式
而特征方程就是微分方程拉氏变换后,使分母多项式为零时的等式R(s)=0,这其实就是传递函数的极点。
Ⅱ 传递函数是在零初始条件下定义的,只能反映在零初始条件的输入输出关系。
Ⅲ 传递函数表征系统本身的动态特性,只取决于系统本身的结构参数,与输入、初始条件无关。
Ⅳ 传递函数G(s)的反拉普拉斯变换是系统的脉冲输出C(t)
脉冲输入的拉氏变换在上一节例四讲过(如图),其拉氏变换输出量为1 ——
带入传递函数定义式——
因此对传递函数执行反拉氏变换,就能得到脉冲输出。
这个性质在后期研究输入输出的简化时十分有用。
回顾一下,由于微分方程难以研究输入输出的关系,因此我们考虑对其进行拉氏变换得到简化的输入输出关系,通过三步就得到了传递函数,接着我们又研究了传递函数的性质。
小结:从头到这,我们学习了如何求微分方程(3步),如何进行拉氏变换(一张数对表+三大性质+三大定理),零初始条件化简,提出拉氏变换后的输入输出量,得到传递函数。
下一节我们将对输出的图像进行初步研究,看看传递函数是如何影响输出的?
写在后面:
很开心你能耐着性子读到这里,很荣幸能将我的三脚猫知识分享给大家。
星马也是小白,因此更懂小白的心思。这篇文章也还有很多不足之处,或是纰漏,希望你发现了及时在评论区提醒我呀~
(人工智能学院就是每周四五天满课的啦,最近期中考试,更新基本随缘~)
别丢收藏夹吃灰啦好嘛~
星马是刚入门的大菜比,有错望指正,有项目可以带带我。