运动控制先导课(二)——拉普拉斯变换与传递函数

上节课我们简单介绍了系统的分类、拉氏变换、如何用拉氏变换解决微分方程、反拉氏变换、如何用反拉氏变换得到微分形式的解。

还提到了一个零初始条件——即系统在初始时各物理量都为0,可以大大简化高阶微分的计算。

这一节我们回应什么是传递函数,他是如何来的?为什么需要传递函数?有什么性质?


为什么要传递函数?

引言提到:传递函数和微分方程一样,都是反映输入输出之间的关系。

系统的微分方程是由 输入输出量 和他们的 各阶导数 还有一些 系统参数 构成的,
它的结构决定了它就是比较复杂的:

上一节拉普拉斯变换中提到的两个例子呈现,微分方程的表达含有大量微分项:

看起来还不是很复杂是不是,那我们给出最一般的微分方程形式:

a_n \frac{d^n c(t)}{dt^n} + a_{n-1} \frac{d^{n-1} c(t)}{dt^{n-1}} + \cdots + a_1 \frac{dc(t)}{dt} + a_0 c(t) =

b_m \frac{d^m r(t)}{dt^m} + b_{m-1} \frac{d^{m-1} r(t)}{dt^{m-1}} + \cdots + b_1 \frac{dr(t)}{dt} + b_0 r(t)

这就给研究带来了很大的困难。而比起细究各个微分项发生了什么样的变换,我们更关心输入和输出间的关系,
也就是说,我们希望得到一个输出关于输入的函数,比如下面这个系统,可以写作 输出C(s)/输入R(s)=K 的形式。

还记得这个微分方程拉氏变换后的解是什么形式吗?

没错,可以将一侧的输出/输入转化为单个X(s)代表的形式!

一般的微分方程左右都有项,而通过拉氏变换我们可以都整理成含R(s) C(s)的多项式


从拉氏变换到传递函数 

流程如下:

①拉氏变换
首先应用拉氏变换以及微分定理,将微分方程的高阶导以及参数项进行拉氏变换。

但由于高阶微分项拉普拉斯变换后会产生一堆零处的高阶导数,因此我们引入“零初始条件”:

②零初始条件 
在零初始条件下,f在零处各阶导数都等于0,消去了,只剩下:

a_n s^n C(s) + a_{n-1} s^{n-1} C(s) + \cdots + a_1 s C(s) + a_0 C(s) =

b_m s^m R(s) + b_{m-1} s^{m-1} R(s) + \cdots + b_1 s R(s) + b_0 R(s)

③提出输入输出 
最后将拉氏变换后的C(s) R(s)提出得到:

\left[ a_n s^n + a_{n-1} s^{n-1} + \cdots + a_1 s + a_0 \right] C(s) = \left[ b_m s^m + b_{m-1} s^{m-1} + \cdots + b_1 s + b_0 \right] R(s)

此时,等式两边都能提出C(s)和R(s),作为输出和输入,从而构建出我们需要的形式——传递函数。

G(s)=\frac{C(s)}{R(s)} = \frac{b_m s^m + b_{m-1} s^{m-1} + \cdots + b_1 s + b_0}{a_n s^n + a_{n-1} s^{n-1} + \cdots + a_1 s + a_0}

传递函数分子是输出项,包含了输出的各阶微分项拉氏变换后的状态,承载了系统的所有输出状态;
分母是输入项,包含了输入的各阶微分拉氏变换后的状态,承载了系统在“零初始条件”的输入状态。

注意:求解微分方程时可能涉及零处高阶导数的运算,但传递函数一定是“零初始条件”下的拉氏变换!可以理解为传递函数就是将微分方程拉氏变换后,进行输入输出分离,再令零处的各阶导数为零得到的。



以上,我们捋清了传递函数是如何通过拉普拉斯变换得到的,接下来我们正式引出传递函数的定义。

传递函数

举几个例子,由此我们可以求得开头提到的RLC电流的传递函数以及阻尼系统的传递函数:
步骤其实就是利用拉氏变换解微分方程,只是在变换后加入零初始条件进行化简,接着将左右两侧提出输入量的拉氏变换R(s)和输出量的拉氏变换C(s),二者作比得到G(s)。


传递函数的性质:

Ⅰ 传递函数的极点就是微分方程的特征根

在一般微分方程的拉氏变换中我们知道,传递函数可以写作多项式,就可以被写成零极式,即分母和分子都写为单项式相乘的形式。
其中,使得分子为零的点就叫零点,使得分母为零的点就叫极点。

G(s)=\frac{C(s)}{R(s)} = \frac{b_m s^m + b_{m-1} s^{m-1} + \cdots + b_1 s + b_0}{a_n s^n + a_{n-1} s^{n-1} + \cdots + a_1 s + a_0}——多项式

G(s) = \frac{(s - z_1)(s - z_2) \cdots (s - z_m)}{(s - p_1)(s - p_2) \cdots (s - p_n)}——零极式

而特征方程就是微分方程拉氏变换后,使分母多项式为零时的等式R(s)=0,这其实就是传递函数的极点。

Ⅱ 传递函数是在零初始条件下定义的,只能反映在零初始条件的输入输出关系。

Ⅲ 传递函数表征系统本身的动态特性,只取决于系统本身的结构参数,与输入、初始条件无关。

Ⅳ 传递函数G(s)的反拉普拉斯变换是系统的脉冲输出C(t)

脉冲输入的拉氏变换在上一节例四讲过(如图),其拉氏变换输出量为1 ——

\mathcal{L}[\delta(t)] = \int_{0^-}^{\infty} \delta(t) e^{-st} dt = 1

带入传递函数定义式——G(s) = \frac{\mathcal{L}[c(t)]}{\mathcal{L}[r(t)]} =\frac{\mathcal{L}[c(t)]}{\mathcal{L}[\delta(t)]} = \frac{\mathcal{L}[c(t)]}{1}

因此对传递函数执行反拉氏变换L^{-1}[G(t)]=C(t),就能得到脉冲输出。

这个性质在后期研究输入输出的简化时十分有用。


回顾一下,由于微分方程难以研究输入输出的关系,因此我们考虑对其进行拉氏变换得到简化的输入输出关系,通过三步就得到了传递函数,接着我们又研究了传递函数的性质。

小结:从头到这,我们学习了如何求微分方程(3步),如何进行拉氏变换(一张数对表+三大性质+三大定理),零初始条件化简,提出拉氏变换后的输入输出量,得到传递函数。

下一节我们将对输出的图像进行初步研究,看看传递函数是如何影响输出的?

写在后面:

很开心你能耐着性子读到这里,很荣幸能将我的三脚猫知识分享给大家。

星马也是小白,因此更懂小白的心思。这篇文章也还有很多不足之处,或是纰漏,希望你发现了及时在评论区提醒我呀~

(人工智能学院就是每周四五天满课的啦,最近期中考试,更新基本随缘~)

别丢收藏夹吃灰啦好嘛~

星马是刚入门的大菜比,有错望指正,有项目可以带带我。

### 解决PyCharm无法加载Conda虚拟环境的方法 #### 配置设置 为了使 PyCharm 能够成功识别并使用 Conda 创建的虚拟环境,需确保 Anaconda 的路径已正确添加至系统的环境变量中[^1]。这一步骤至关重要,因为只有当 Python 解释器及其关联工具被加入 PATH 后,IDE 才能顺利找到它们。 对于 Windows 用户而言,在安装 Anaconda 时,默认情况下会询问是否将它添加到系统路径里;如果当时选择了否,则现在应该手动完成此操作。具体做法是在“高级系统设置”的“环境变量”选项内编辑 `Path` 变量,追加 Anaconda 安装目录下的 Scripts 文件夹位置。 另外,建议每次新建项目前都通过命令行先激活目标 conda env: ```bash conda activate myenvname ``` 接着再启动 IDE 进入工作区,这样有助于减少兼容性方面的问题发生概率。 #### 常见错误及修复方法 ##### 错误一:未发现任何解释器 症状表现为打开 PyCharm 新建工程向导页面找不到由 Conda 构建出来的 interpreter 列表项。此时应前往 Preferences/Settings -> Project:...->Python Interpreter 下方点击齿轮图标选择 Add...按钮来指定自定义的位置。按照提示浏览定位到对应版本 python.exe 的绝对地址即可解决问题。 ##### 错误二:权限不足导致 DLL 加载失败 有时即使指定了正确的解释器路径,仍可能遇到由于缺乏适当的操作系统级许可而引发的功能缺失现象。特别是涉及到调用某些特定类型的动态链接库 (Dynamic Link Library, .dll) 时尤为明显。因此拥有管理员身份执行相关动作显得尤为重要——无论是从终端还是图形界面触发创建新 venv 流程均如此处理能够有效规避此类隐患。 ##### 错误三:网络连接异常引起依赖下载超时 部分开发者反馈过因网速慢或者其他因素造成 pip install 操作中途断开进而影响整个项目的初始化进度条卡住的情况。对此可尝试调整镜像源加速获取速度或是离线模式预先准备好所需资源包后再继续后续步骤。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值