又学了几个新的COMFYUI小技巧,分享给大家!

掌握一些小技巧,提升效率!

1、图像选择器

出图批次是四张,然后想选一张图进入到之后的工作流,就可以用这个节点

默认是这样的

图片

运行到这个节点的时候,会出现四张图片,选中满意的图片,点击Progress selected image

图片

然后就选好了,之后的工作流里面,你可以接换脸节点,放大节点,都是可以的

图片
更多实操教程和AI绘画工具,可以扫描下方,免费获取

在这里插入图片描述

2、桥接预览图像

文生图出来的最终效果,可以作为图生图的输入图片,桥接预览图像功能和加载图像一样

图片

**
**

3、切换语言

点击Switch Locale,切换成中文

图片

界面都会变成中文的

图片

4、直角线

默认的界面是曲线

图片

点击设置

图片

连线渲染模式:直角线

图片

连线就变成这样的了

图片

5、注释

双击界面,选择注释

图片

可以给工作流添加备注信息

图片

6、输出图片查看

做的图片都保存在这个路径里面

D:\ComfyUI-aki-v1.3\output

7、显示队列

点击显示队列

图片

这里可以看到正在运行的以及等待运行的任务

图片

8、锁住节点

选中节点,右击→锁定,节点上面会出现一个小锁图标,这样节点就不能移动了

图片

选中节点,右击→固定,这样节点就不能移动了

图片

9、输出多张图片

批次大小设置四,一次就可以输出四张图

图片

10、设置节点颜色

选中节点,右击→颜色→红色

图片

节点颜色就变成红色了

图片

这里直接将该软件分享出来给大家吧~

1.stable diffusion安装包

随着技术的迭代,目前 Stable Diffusion 已经能够生成非常艺术化的图片了,完全有赶超人类的架势,已经有不少工作被这类服务替代,比如制作一个 logo 图片,画一张虚拟老婆照片,画质堪比相机。

最新 Stable Diffusion 除了有win多个版本,就算说底端的显卡也能玩了哦!此外还带来了Mac版本,仅支持macOS 12.3或更高版本

在这里插入图片描述

2.stable diffusion视频合集

我们在学习的时候,往往书籍源码难以理解,阅读困难,这时候视频教程教程是就很适合了,生动形象加上案例实战,一步步带你入坑stable diffusion,科学有趣才能更方便的学习下去。

在这里插入图片描述

3.stable diffusion模型下载

stable diffusion往往一开始使用时图片等无法达到理想的生成效果,这时则需要通过使用大量训练数据,调整模型的超参数(如学习率、训练轮数、模型大小等),可以使得模型更好地适应数据集,并生成更加真实、准确、高质量的图像。

在这里插入图片描述

4.stable diffusion提示词

提示词是构建由文本到图像模型解释和理解的单词的过程。可以把它理解为你告诉 AI 模型要画什么而需要说的语言,整个SD学习过程中都离不开这本提示词手册。

在这里插入图片描述

5.SD从0到落地实战演练

在这里插入图片描述

如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名SD大神的正确特征了。

这份完整版的stable diffusion资料我已经打包好,需要的点击下方插件,即可前往免费领取!

在这里插入图片描述

### ComfyUI 中基础调度器的相关信息 #### 基础调度器的作用 在 ComfyUI 的文生图工作流中,调度器(Scheduler)是一个核心组件,负责控制生成过程中的采样行为。其主要职责是在输入阶段接收用户定义的参数,并通过一系列算法调整扩散模型的行为,从而影响最终生成图像的质量和风格[^2]。 #### 调度器的工作原理 调度器基于扩散模型的数理论运行,在生成过程中执行【输入】【处理】【输出】三个环节的操作。具体而言,调度器会根据预设的时间步长(Timesteps),逐步减少噪声并逼近目标图像分布。这一过程依赖于 AI 扩散模型内部的采样机制,而调度器则决定了每一步采样的策略和权重分配[^4]。 以下是调度器工作的简化流程: 1. **初始化参数**:设置时间步长、初始噪声水平以及其他超参数。 2. **迭代更新**:按照预定规则逐次降低噪声强度,同时优化潜在空间表示。 3. **生成结果**:当达到指定步数后,提取去噪后的潜变量作为最终图像数据。 #### 配置方式 配置调度器通常涉及以下几个方面: - **选择合适的调度器类型**:ComfyUI 支持多种调度器实现,例如 DDIM (Denoising Diffusion Implicit Models) 和 LMS Discrete Scheduler 等。不同类型的调度器适用于不同的应用场景,需根据需求合理选取[^5]。 - **调节关键参数**: - 步数(Steps):决定生成精度与速度之间的权衡;更多步数意味着更高质量但也更耗时。 - 宽高比例(Width/Height Ratio):用于设定输出图片尺寸大小关系。 - CFG Scale(Classifier-Free Guidance Scale):增强条件引导效果的程度指标,数值越大越倾向于遵循提示词描述特征[^3]。 下面展示如何利用 Python API 设置一个简单的调度器实例: ```python from diffusers import DDIMScheduler, StableDiffusionPipeline scheduler = DDIMScheduler(beta_start=0.00085, beta_end=0.012, num_train_timesteps=1000) pipeline = StableDiffusionPipeline.from_pretrained( "path/to/model", scheduler=scheduler) ``` 此代码片段展示了创建自定义 `DDIMScheduler` 并将其应用于稳定扩散流水线的过程。 #### 使用说明 要有效使用 ComfyUI 的基础调度器,建议新手从习官方文档或社区分享的基础教程入手。熟悉界面布局之后,尝试构建简单的工作流以实践所知识。随着经验积累逐渐探索高级特性如动态调整参数组合等技巧提升创作灵活性。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值