个股启动之后的短线上涨模式判别模型的阶段性总结规划
说明
首先对于模式判别的方法是基于成交额的,
因为我觉得其他数据可能会造假,但是成交额不会,买入和卖出的都是真金白银,
涉及到融资融券,情况可能会复杂一点。
短线上涨模式判别,即识别主力,我本能想到大单数据。ddx,ddz之类的指标。
但是传统的大单净额指标我觉得是有问题,举一个实验例子,
以庄股张江高科为例,底部建仓阶段大单净额都是为负数。
我深入的思考了,大单净额为负不一定都是主力参与的,
市场自然抛压(大户卖出,基金赎回等)建仓的过程中
张江高科这个周期性庄家一定会进去拿筹码,
所以总的大单净额为负数并不能反应什么。
因为庄家下单手数偏好的问题,并不能用笼统的大单净额来跟踪庄家,
所以我又写了一个异常区间净额因子来发现庄家的踪迹,
一定程度上可以区分散户、其他主力单和庄家单,
对上涨的识别准确率会有很多贡献。
模式判别的步骤
Phase 1 模型部分
规划里此阶段有两类模型,
一个是区间净额模型,
我把传统的大单净额ddz指标给拆碎了,分成了许许多多的区间净额,并附上市值类型来喂给模型训练,目标特征量是未来五天之内涨幅超过百分之五,且十天之内有过最大涨幅超过百分之五的一天,就打标1,其余打标0。
第二个是风控模型,
我把一些看似上涨实则高位大幅出货的样本喂给模型训练。
集成模型预测
随机抽五百只股票的数据来训练一个区间净额模型,总共集成十个模型,如果预测结果判定为上涨的超过七个,交给风控模型,如果风控通过,再进行第二个阶段,强规则纠错。
Phase 2 强规则干预
跌停不买入
临近报告期不买入
涨停不排单
等一些自定义规则
一些进展
跑了几个针对个股的净额区间小模型,效果还不错,有让我眼前一亮的预测结果,但是换一个市值差不多的个股交给模型预测,准确度很低,所以想搞一个多股票的大模型,来看看会不会有提升,目前净额区间大模型的训练数据还在批处理中。
一些待解决的问题
-
关于拆单检测算法,我的理解里,只有稍微大一点的资金才会去拆单,我想我的模式判别可以加上拆单检测。
但是因为我没有接触过时序数据的处理分析的经验,只是凭借实盘的经历,知道有一种很常见的拆单:几乎同时下多个单子,他们可能总的加起来的手数是个较大的整数。但是我不知道如何去从数据处理的角度下手,不知道怎么实时的聚合这些买卖序号然后做拆单分析的。 -
目前我的净额模型,我只是简单的把许许多多的净额区间喂给他,让他发现可能得异常已经做出预测,特征量的选取上很粗糙,对于特征量的选取上
应该做一些额外的学习,可以考虑RMF的原则来生成。
目前的大模型数据还在批处理中,吐槽一下机械硬盘的数据处理速度实在是太慢了。