数学建模B

题目

一种太阳能光热发电的能量汇聚系统简化后如图1所示。平行光线先经过若干个长度不超过2.5的直线段反射到曲线EF上,再经过曲线EF反射后汇聚到直线段CD上。已知AB的长度为400,CD的长度为10,OG的高度为100。请设计曲线EF的长度和形状,在设计好曲线EF后,给出下列问题的解答。

问题1 当入射的平行光线与AB的夹角为90度时,请安排长度不超过2.5的直线段的数量、每个直线段的位置和角度,使得与AB垂直的光线经过两次反射后进入CD区间内的比例最大。

问题2 当入射的平行光线与AB的夹角从45度变化到90度的过程中,请给出长度不超过2.5的直线段的数量、位置和角度的调整方案,使得光线经过两次反射后进入CD区间内的比例最大。

问题3 能否将长度为不超过2.5的直线段改为长度不超过2.5的光滑曲线,通过对每一段长度不超过2.5的光滑曲线形状和位置的设计以及角度变化的调整,使得当入射平行光线与AB的夹角从45度变化到90度的过程中,光线经过两次反射后进入CD区间的比例有所提高?

图1  入射平行光线经过二次反射后汇聚示意图

问题1:

  1. 确定入射光线与AB的夹角为90度时的设计:

    • 首先,我们可以选择一定数量的直线段,并确定它们的位置和角度。这些直线段将用于实现光线的反射。
    • 接下来,根据入射光线与AB的夹角为90度,使用反射定律来计算光线在每个直线段上的反射角度,并决定光线的路径。
  2. 优化直线段的位置和角度:

    • 我们可以使用数值优化方法,例如遗传算法、模拟退火算法等,来调整直线段的位置和角度,以最大化光线经过两次反射后进入CD区间内

import numpy as np
from scipy.optimize import minimize

# 已知参数
AB_length &
### 光热发电能量汇聚数学建模方法 光热发电中的能量汇聚涉及几何光学原理以及优化理论的应用。以下是针对该问题的具体建模思路: #### 1. 几何结构描述 题目中提到平行光线经由若干直线段反射至曲线EF,随后再次反射并最终汇聚到直线段CD上。这一过程可以被抽象为一系列几何约束条件下的路径规划问题。已知参数如下: - AB 的长度为 400[^1]; - CD 的长度10; - OG 高度为 100。 这些数据构成了整个系统的尺度基础,用于后续计算和验证。 #### 2. 曲线 EF 的设计 为了实现最佳的能量汇聚效果,需合理设计曲线 EF 的形状及其长度。通常情况下,抛物面或椭圆弧形能够有效聚焦入射光线。具体而言: - 抛物线方程可表示为 \( y = ax^2 + bx + c \),通过调整系数 a, b 和 c 来满足特定边界条件。 - 若选用椭圆形,则其标准形式为 \( \frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 \)。在此基础上进一步求解焦点位置与曲率半径的关系。 上述两种方案的选择取决于实际物理环境的要求及工程可行性考量。 #### 3. 反射定律应用 依据反射定律——入射角等于反射角的原则构建数学表达式。设某一点 P(x,y) 属于曲线 EF 上任意位置,则对于来自同方向上的每一条入射光线 i ,均应存在唯一对应的反射路线 j 满足角度匹配关系。此部分可通过向量代数或者解析几何手段加以表述。 #### 4. 能量分布评估 考虑到真实世界中存在的各种干扰因素(如大气散射、表面粗糙度等),单纯依靠理想化假设可能无法完全反映实际情况。因此引入误差项 ΔE 表征总能量损失情况,并将其纳入目标函数之中作为惩罚因子之一参与全局最优化运算过程中去。 ```python import numpy as np from scipy.optimize import minimize def energy_loss(params): # params 包含待估参数比如a,b,c或者其他控制变量 ... return total_energy_lost_with_given_params initial_guess = [...] # 初始猜测值列表 result = minimize(energy_loss, initial_guess) optimized_parameters = result.x ``` 以上代码片段展示了如何利用 Python 中 SciPy 库来寻找使总体能量损耗最小化的最优解决方案集合。 --- ####
评论 29
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值