数学建模(二)车灯线光源的优化设计(02年国赛A题)

本文参考和学习的是当年全国一等奖作品,作者:吕骥 余白敏 肖世尧

(一)题目梳理

这道题使用大量的物理光学知识,不过需要的知识都不太难查到。

题目表述很短很直接:

在这里插入图片描述

问题很生活,平时没怎么注意车灯的形状实际是旋转抛物面,有意思。

1. 从题目可提取的关键信息

  • 车灯的外形信息完全get,包括线光源的放置位置,物理模型非常清晰明确。
    在这里插入图片描述
  • 题目要求简单明了,是优化问题:求在最小化功率的目标下,线光源的最佳长度,约束条件是测试屏上B,C点的光强度。
  • 题目难点明确:测试屏上反射光亮区的绘制。如果根据你的模型绘制出来的图形不符实际,直接使论文失去颜色,再无被多看一眼的可能。
  • 光强度量化为光学中的发光强度

2. 容易想到的假设

  • 只考虑一次反射,不考虑干涉,衍射等其他光学现象
  • 不考虑测试屏的大小,假设它可呈现出车灯的完整反射亮区。

3. 尝试思考

  • 由于车灯很小,开口半径才3.6cm,深度才2.16cm,而车灯焦点到测试屏的距离是25m,差几百倍,所以线光源的长度相比于车灯与测试屏的距离,非常短。因此可以尝试把线光源近似简化为无数个点光源在焦点F处的叠加,即使用微元法

  • 点光源辐射功率和测试屏上点的光强度的映射关系函数要找到

  • 点光源以球面波的形式向外辐射光,所以任一点光源辐射出的光到了远处的测试屏上应该照出一片圆形亮区,而非一个点。(发光体的大小与照射距离相比比较小的场合都可以观察到这种现象,有很多相关的生活经验。比如手电筒照到远方是一个大大的圆亮区,因为相对于到远处的距离,小小的手电筒发光区可以等效为多个点光源的叠加;再比如远远地看指示灯,如电脑显示器右下角的蓝色指示灯,看到的不是点,而是圆形亮区)

  • 要画亮区就要知道测试屏上每一点的光强

  • 测试屏上每个点的光强是直射光和反射光的光强之和(叠加)

  • 约束里的额定值的确定很重要

(二)山穷水尽已无路,柳暗花明也没村

是时候瞻仰全国一等奖的风韵了。

(1)建模前的准备

  • 使用两个物理量:发光强度,发光效率。后者是把光源功率转化为辐射光能的桥梁。

  • 微元法把复杂的实际生活中的线光源转化为简单的理想化的点光源模型

  • 假设一个点光源经过直射只有一条光线能到达测试屏上某个特定点,而经过反射可能有不同数量的光线到达测试屏上某个特定点。作者们使用几何和物理手段在后文仔细去分析了反射光线的条数。分析细到要数光线的条数!乍一看觉得好玄乎,后面看了他们的数学分析,不但不觉得玄乎,还觉得很科学···

在这里插入图片描述

  • 解决了额定值的确定问题:
    在这里插入图片描述
  • 模型的假设是很全面的:
    在这里插入图片描述

(2)几个重点结论的挖掘和发现

这三个定理对于模型建立和亮区绘制极其关键!!!

看这个题目之前相信大多数人都不太了解旋转抛物面的数学方程,更不了解它的光学性质,所以定理1较难发现,但在网上还是很容易查到它及其证明的。总之,定理1的挖掘很重要。
在这里插入图片描述

然后紧接着给出了一个关键的旋转抛物面的光学结论,还给出了简单易懂的证明:
在这里插入图片描述
在这里插入图片描述

旋转抛物面是由抛物线绕着对称轴(这里是y轴)旋转一周得到的二维曲面。

文中给出了选车灯的旋转抛物面的数学方程,反射面上每个点的切面方程,法线方程,证明出反射面上的所有点的法线都交于对称轴y轴上的同一点。

代入开口半径和深度:
x 2 = 2 c ∗ 21.6 m m , x = 36 m m x^2=2c*21.6mm,x=36mm x2=2c

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值