在数据分析和机器学习领域,时间序列预测和多输入单输出系统的预测是重要且复杂的问题。传统的BP(反向传播)神经网络虽然具有强大的非线性函数逼近能力,但在处理这些问题时容易陷入局部极小值、训练速度慢以及过拟合等问题。为了克服这些不足,我们引入了SA-BP(模拟退火算法优化BP神经网络)算法。本文将详细介绍SA-BP算法的原理、步骤,并结合Python程序进行实例分析。
基于SA-BP模拟退火算法优化BP神经网络实现数据预测Python实现
于 2024-09-05 16:57:59 首次发布
在数据分析和机器学习领域,时间序列预测和多输入单输出系统的预测是重要且复杂的问题。传统的BP(反向传播)神经网络虽然具有强大的非线性函数逼近能力,但在处理这些问题时容易陷入局部极小值、训练速度慢以及过拟合等问题。为了克服这些不足,我们引入了SA-BP(模拟退火算法优化BP神经网络)算法。本文将详细介绍SA-BP算法的原理、步骤,并结合Python程序进行实例分析。