流式多处理器(Streaming Multiprocessors,SMs)是英伟达GPU架构中的核心计算单元,以下是其详细介绍:
结构组成
• 处理核心:包含多个CUDA核心,是进行数据计算的基本单元,能高效处理各种计算任务,如整数运算、浮点运算等。
• 共享内存:供同一SM内的线程共享数据和同步,可减少内存访问延迟,提高数据交互效率。
• 寄存器文件:为线程提供快速数据存储,每个SM有大量寄存器,分配给运行的线程,加速数据处理。
• 特殊功能单元:如用于处理超越函数的单元等,辅助完成复杂计算。
• 线程束调度器:负责调度和管理SM内的线程束,决定线程束的执行顺序和时机,确保资源有效利用。
工作原理
• 并行处理数据:可同时处理多个线程束,大量CUDA核心并行工作,使GPU能同时处理大量数据,如在深度学习中同时处理多个图像数据。
• 指令执行:从GPU内存取指令和数据,在CUDA核心执行,线程束内线程按顺序执行相同指令,处理不同数据元素,实现单指令多数据(SIMD)操作。
• 数据共享与同步:线程通过共享内存交换数据和同步,如在计算中,线程将中间结果存共享内存,供其他线程使用,提高数据访问效率。
在GPU中的作用
• 提高计算性能:多个SM协同工作,极大提高GPU计算能力,是GPU能进行大规模并行计算的基础,使GPU在图形渲染、科学计算、人工智能等领域表现出色。
• 优化资源利用:SM内资源合理分配和管理,根据任务需求动态调整,提高资源利用率,避免浪费。
• 支持并发执行:多个SM可同时处理不同任务或同一任务的不同部分,支持多任务并发执行,提高系统整体效率。