36的倍数

该篇文章讨论了如何在给定一个正整数数组a,找出可以按照特定运算f拼接成36的倍数的有序数对(i,j),其中i≠j。通过统计数组中特定数字(如3、6、7、2、10和8)的数量来计算可能的组合总数。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

题目描述

煜定义了一种运算f,它表示将两个正整数按照字面值从左到右拼接。例如f(1,1)=11,f(114,514)=114514。
现在煜有一个大小为N的正整数数组a,第i个元素为ai,现在她从中想选出两个正整数进行前后拼接,使得它们拼接后是一个36的倍数,问煜有多少种可行的方案。
具体来讲,她想要知道有多少对有序数对i,j(i≠j)满足f(ai,aj)是一个36的倍数。

输入描述

第一行输入一个正整数N(1≤N≤1000)数组的大小
接下来输入一行N个正整数ai(1≤ai≤10),表示ai的值。

输出描述

输出一个非负整数,表示有多少对有序数对i,j(i≠j)满足f(ai,aj)是一个36的倍数。

样例输入

7
1 2 3 4 5 6 7

样例输出

2

提示

分别为f(3,6)=36和f(7,2)=72

输入:

1

10

输出:

0

注意当N为1时,凑不出一对。

#include <stdio.h>
int main()
{
    int n;
    scanf("%d",&n);
    int arr[n];
    for(int i=0;i<n;i++){
        scanf("%d",&arr[i]);
    }
    int num3=0,num6=0,num7=0,num2=0,num10=0,num8=0;
    for(int i=0;i<n;i++){
        if(arr[i]==3){
            num3++;
        }
        if(arr[i]==6){
            num6++;
        }
        if(arr[i]==7){
            num7++;
        }
        if(arr[i]==2){
            num2++;
        }
        if(arr[i]==10){
            num10++;
        }
        if(arr[i]==8){
            num8++;
        }
    }
    printf("%d",num3*num6+num7*num2+num10*num8);
    return 0;
}

<think>嗯,用户想让我介绍一下C++中如何计算最小公倍数。首先,我得回忆一下什么是最小公倍数。最小公倍数(LCM)是指两个或多个整数的最小的那个共同倍数。比如,6和8的LCM是24,因为24是它们都能整除的最小数。 接下来,我需要考虑在C++中如何实现这个计算。通常,计算两个数的LCM可以通过它们的最大公约数(GCD)来简化。公式是LCM(a, b) = (a * b) / GCD(a, b)。所以,关键问题转化为如何计算GCD。 计算GCD最常用的方法是欧几里得算法。这个算法基于这样的原理:两个数的GCD等于其中较小的数和两数相除余数的GCD。例如,计算GCD(48, 18),先求48除以18的余数12,然后计算GCD(18, 12),接着18除以12余6,再计算GCD(12,6),最后余0,所以GCD是6。这个过程可以用递归或者循环实现。 然后,我需要写一个计算GCD的函数,接着用这个函数来计算LCM。需要注意的是,当计算a*b时,如果a和b很大,可能会导致整数溢出。因此,可能需要使用更大的数据类型,比如long long,或者在计算顺序上进行调整,先除以GCD再乘以另一个数。例如,LCM = (a / gcd) * b,这样可以减少中间结果的大小,避免溢出。 接下来,我应该考虑一些特殊情况。比如,当其中一个数是0时,LCM应该是0,因为0和任何数的LCM都是0。不过根据数学定义,0没有LCM,所以在代码中需要处理这种情况,可能返回0或者抛出异常,视需求而定。 然后,编写代码的步骤应该是:首先实现GCD函数,可以使用递归或者迭代。然后,在LCM函数中处理0的情况,然后计算a*b除以GCD,但要注意运算顺序防止溢出。例如,先除以GCD,再乘以另一个数。 例如,函数可能如下: int gcd(int a, int b) { if (b == 0) return a; return gcd(b, a % b); } int lcm(int a, int b) { if (a == 0 || b == 0) return 0; return (a / gcd(a, b)) * b; } 这里,先检查a或b是否为0,如果是的话返回0。否则,先计算GCD,然后将a除以GCD,再乘以b,这样避免a*b可能导致的溢出。 不过,用户可能想知道如何处理更大的数,或者如何处理多个数的最小公倍数。对于多个数的情况,可以迭代计算,先计算前两个的LCM,再与第三个数计算,依此类推。 此外,还需要注意输入的数是否为负数。通常,LCM是正数,所以在计算前可以将负数转换为正数处理。例如,在gcd函数中取绝对值。 可能的错误点:没有处理0的情况,导致除以零错误;或者没有处理负数,导致结果错误。因此,在代码中需要处理这些情况。 总结来说,C++中计算最小公倍数的步骤是: 1. 实现计算最大公约数的函数。 2. 使用GCD来计算LCM,注意避免溢出。 3. 处理特殊情况和错误输入。 现在,用户可能还想了解如何处理多个数的LCM,或者如何优化算法,以及如何处理大数情况下的溢出问题。</think>在C++中计算两个数的最小公倍数(LCM)可以通过以下方法实现: **方法实现:** ```cpp #include <iostream> #include <algorithm> // 用于std::swap // 计算最大公约数(GCD)的辅助函数 int gcd(int a, int b) { a = abs(a); b = abs(b); while (b != 0) { a %= b; std::swap(a, b); } return a; } // 计算最小公倍数(LCM) int lcm(int a, int b) { if (a == 0 || b == 0) return 0; // 处理特殊情况 return (a / gcd(a, b)) * b; // 防止整数溢出 } // 示例用法 int main() { int num1 = 12, num2 = 18; std::cout << "LCM of " << num1 << " and " << num2 << " is: " << lcm(num1, num2) << std::endl; // 输出: LCM of 12 and 18 is: 36 return 0; } ``` **原理解释:** 1. **GCD计算**:采用欧几里得算法,通过反复取模运算快速找到最大公约数 2. **防止溢出**:使用`(a / gcd) * b`代替`(a * b) / gcd`避免乘法溢出 3. **处理负数**:通过取绝对值保证计算正确性 4. **特殊值处理**:当任一数为0时直接返回0 **优化说明:** - 使用迭代而非递归实现GCD,避免栈溢出 - 通过交换变量减少运算次数 - 使用更高效的整数操作 **拓展应用:** ```cpp // 计算多个数的LCM int multi_lcm(const std::vector<int>& numbers) { int result = 1; for (int num : numbers) { result = lcm(result, num); } return result; } ```
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值