一维前缀和
一维差分
二维前缀和
例题:
先预处理出二维前缀和,然后枚举所有的正方形,并且所有正方形的边长为小于min(n ,m)
二维差分
以上都是对差分数组进行的操作
那么我们要怎么预处理得到差分数组呢?
//差分数组的预处理(曲线救国)
for(int i=1;i<=n;++i)
for (int j=1;j<=m;++j){
a[i][j]=sc.nextInt();
diff(i,j,i,j,a[i][j]);
}
离散化
离散化,就是把一些很离散的点给重新分配。
举个例子,如果一个坐标轴很长(>1e10),给你1e4个坐标,询问某一个点,坐标比它小的点有多少。
很容易就知道,对于1e4个点,我们不必把他们在坐标轴上的位置都表示出来,因为我们比较有多少比它小的话,只需要知道他们之间的相对大小就可以,而不是绝对大小,这,就需要离散化。
而离散化又分为两种,分为的两种是对于重复元素来划分的。第一种是重复元素离散化后的数字相同,第二种就是不同
第一种
其实就是用一个辅助的数组把你要离散的所有数据存下来。
然后排序,排序是为了后面的二分。
去重,因为我们要保证相同的元素离散化后数字相同。
再用二分把离散化后的数字放回原数组。
代码如下。
//n 原数组大小 num 原数组中的元素 lsh 离散化的数组 cnt 离散化后的数组大小
int lsh[MAXN] , cnt , num[MAXN] , n;
for(int i=1; i<=n; i++) {
scanf("%d",&num[i]);
lsh[i] = num[i];
}
sort(lsh+1 , lsh+n+1); //排序
cnt = unique(lsh+1 , lsh+n+1) - lsh - 1; //去重
for(int i=1; i<=n; i++)
num[i] = lower_bound(lsh+1 , lsh+cnt+1 , num[i]) - lsh;
//lower_bound函数用来查找离散化索引,它用来找数组中第一个大于或等于目标值的数据的位置,
注意事项:
1.去重并不是把数组中的元素删去,而是重复的部分元素在数组末尾,去重之后数组的大小要减一
2.二分的时候,注意二分的区间范围,一定是离散化后的区间
3.如果需要多个数组同时离散化,那就把这些数组中的数都用数组存下来
对于其中去重和查找离散化索引的部分,可以模拟进行