前缀和与差分

本文介绍了如何预处理一维和二维前缀和,以及差分数组的操作。重点讲解了离散化的过程,包括重复元素的处理、排序、去重和使用二分查找离散化索引。同时提醒了注意事项,如去重不影响数组大小和二分区间设定等。
摘要由CSDN通过智能技术生成

一维前缀和

一维差分

二维前缀和

例题:

先预处理出二维前缀和,然后枚举所有的正方形,并且所有正方形的边长为小于min(n ,m)

二维差分

以上都是对差分数组进行的操作

那么我们要怎么预处理得到差分数组呢?

//差分数组的预处理(曲线救国)
       for(int i=1;i<=n;++i)
           for (int j=1;j<=m;++j){
               a[i][j]=sc.nextInt();
               diff(i,j,i,j,a[i][j]);
           }

离散化

离散化,就是把一些很离散的点给重新分配。

举个例子,如果一个坐标轴很长(>1e10),给你1e4个坐标,询问某一个点,坐标比它小的点有多少。

很容易就知道,对于1e4个点,我们不必把他们在坐标轴上的位置都表示出来,因为我们比较有多少比它小的话,只需要知道他们之间的相对大小就可以,而不是绝对大小,这,就需要离散化。

而离散化又分为两种,分为的两种是对于重复元素来划分的第一种是重复元素离散化后的数字相同,第二种就是不同

第一种

其实就是用一个辅助的数组把你要离散的所有数据存下来。

然后排序,排序是为了后面的二分。

去重,因为我们要保证相同的元素离散化后数字相同。

再用二分把离散化后的数字放回原数组。

代码如下。

//n 原数组大小 num 原数组中的元素 lsh 离散化的数组 cnt 离散化后的数组大小 
int lsh[MAXN] , cnt , num[MAXN] , n;
for(int i=1; i<=n; i++) {
	scanf("%d",&num[i]);
	lsh[i] = num[i];	
}
sort(lsh+1 , lsh+n+1); //排序
cnt = unique(lsh+1 , lsh+n+1) - lsh - 1; //去重 
for(int i=1; i<=n; i++)
	num[i] = lower_bound(lsh+1 , lsh+cnt+1 , num[i]) - lsh; 
    //lower_bound函数用来查找离散化索引,它用来找数组中第一个大于或等于目标值的数据的位置,

注意事项:

1.去重并不是把数组中的元素删去,而是重复的部分元素在数组末尾,去重之后数组的大小要减一

2.二分的时候,注意二分的区间范围,一定是离散化后的区间

3.如果需要多个数组同时离散化,那就把这些数组中的数都用数组存下来

对于其中去重和查找离散化索引的部分,可以模拟进行

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值