RetinaNet 论文总结

日期:2024年08月05日

目录

前言

论文摘要

Focal Loss

Cross Entropy Loss

Balanced Cross Entropy

 Focal Loss

RetinaNet

网络架构

ResNet 

Feature Pyramid Network (FPN)

Class Subnet

Box Subnet


前言

一般来说,one-stage的目标检测器在检测速度上有着明显优势,而two-stage的目标检测器的精确度比较高。但是RetinaNet的创造者们通过利用一种在cross entropy loss的基础上改进过的损失函数代替传统的损失函数,这使得一个one-stage的模型有了更高的速度和精确度。

论文标题:Focal Loss for Dense Object Detection
论文链接:[1708.02002] Focal Loss for Dense Object Detection (arxiv.org)

论文摘要

 “目前最高准确度的目标检测器基于一种由R-CNN推广的两阶段方法,在稀疏的一组候选目标位置上应用分类器。相比之下,一阶段检测器应用于可能目标位置的规则、密集采样,尽管有潜力更快、更简单,但在准确性上一直落后于两阶段检测器。在本文中,我们调查了为什么会出现这种情况。我们发现,密集检测器在训练过程中遇到的极端前景-背景类别不平衡是主要原因。我们提出通过重塑标准的交叉熵损失来解决这种类别不平衡问题,从而降低对已分类良好的样本的损失权重。我们的新颖损失函数Focal Loss将训练集中于一小部分难样本,并防止大量简单负样本在训练过程中压倒检测器。为了

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值