Model Context Protocol (MCP) 技术原理与项目实战
摘要
随着大型语言模型(LLM)的快速发展,如何高效地将模型与外部数据源和工具集成成为亟待解决的问题。Model Context Protocol(MCP)作为一种新兴的开放协议,为 LLM 应用程序与外部系统之间的无缝集成提供了标准化解决方案。本文深入剖析 MCP 的技术原理,涵盖其核心架构、通信机制、功能模块及安全特性,并通过详细的项目实战案例,展示如何利用 MCP 构建智能、高效的 AI 应用,旨在为研究人员、开发者及技术决策者提供全面的参考。
文章目录
1. 引言
1.1 背景与动机
大型语言模型(LLM)在自然语言处理领域取得了显著进展,展现出强大的语言理解和生成能力。然而,LLM 的应用范围受限于其训练数据和内部知识。为了拓展 LLM 的应用场景,需要将其与外部数据源(如文件系统、数据库)和工具(如 API、命令行工具)进行集成。传统的集成方式通常需要为每个数据源或工具定制开发连接器,导致开发周期长、维护成本高且功能重复。MCP 应运而生,它通过标准化的接口和协议,简化了 LLM 应用与外部系统的集成过程,降低了开发门槛,提高了系统的可扩展性和可维护性。
模型上下文协议(MCP)作为一项标准化层,用于人工智能应用程序与外部服务(如工具 、 数据库和预定义模板)进行有效通信。
你是否曾经尝试构建一个多智能体系统 ,但在每个专业智能体之间有效传播信息时遇到了困难?提供给你的人工智能代理的各种预制和定制工具是否导致工具执行或输出解析错误?或者,这些复杂性可能使你完全放弃了开发自己的代理?
这些障碍可以通过模型上下文协议(MCP)得到解决。MCP 允许人工智能代理在遵循标准化的工具集成协议的同时具有上下文感知能力。
一个 AI 代理 是一个系统或程序,能够代表用户或另一个系统自主执行任务。它通过设计其工作流程并使用可用工具来完成这些任务。 多智能体系统 由多个 AI 代理共同工作,代表用户或另一个系统执行任务。
你可以把 MCP 用于 AI 应用,看作是 USB-C 端口为硬件所起的作用。1 这个类比突出了 USB-C 端口为连接硬件提供的适应性,将其与各种工具和数据源通过 MCP 为 AI 模型提供上下文的标准方式进行了比较。
1.2 MCP 的核心价值
MCP 的核心价值体现在以下几个方面:
- 标准化集成:提供统一的接口,使 LLM 应用能够以标准化方式访问多种数据源和工具,避免了为每个数据源定制开发连接器的繁琐过程。
- 增强上下文感知:使 LLM 能够访问用户的具体文档、数据和工作上下文,从而提供更个性化、更精准的响应。
- 促进生态系统发展:鼓励开发者构建和共享 MCP 服务器,形成丰富的集成生态系统,加速创新和应用开发。
- 保障安全与隐私:通过明确的安全原则和机制,确保数据传输和工具调用过程中的安全性,保护用户隐私。
1.3 研究目标与方法
本文旨在全面深入地研究 MCP 的技术原理和实际应用。通过分析 MCP 的官方文档、技术规范和开源实现,结合实际项目案例,从理论和实践两个维度探讨 MCP 的架构设计、功能模块、开发流程及安全特性。研究方法包括文献综述、技术分析、案例研究和实践验证,力求为读者呈现 MCP 的全貌,并提供具有实践指导意义的结论和建议。
2. MCP 技术原理
2.1 核心架构
MCP 采用客户机-服务器(Client-Server)架构,主要包含以下三个核心组件:
- 宿主(Host):作为容器和协调器,负责创建和管理多个客户端实例,控制客户端连接权限和生命周期,执行安全策略和授权决策,协调 AI/LLM 集成和采样,管理跨客户端的上下文聚合。
- 客户端(Client):由宿主创建和管理,与服务器建立一对一的连接,负责协议协商、能力交换、消息路由、订阅和通知管理,维护服务器之间的安全边界。
- 服务器(Server):提供特定的功能和上下文,通过 MCP 原语(如资源、工具、提示)暴露给客户端,可以是本地进程或远程服务。
工具提供意义
大型语言模型 (LLMs) 如 Granite、Gemini 和 Llama 在单独调用时能力有限。在没有任何 AI 工具的情况下,LLMs 擅长多个领域,包括:
后续文本预测:提示 LLM 完成一个句子,例如“杰克和吉尔上山……”,模型会正确预测出“杰克和吉尔上山去了山丘。”这个提示和响应是后续文本预测的一个例子,并且最适合于模型训练过的文本。
基本问答:由于 LLM 本身无法访问外部数据库或网络搜索,它可以回答与模型训练数据中包含的信息相关的自然语言问题。例如“告诉我凡尔赛条约的详情”,因为关于第一次世界大战的重要信息很可能包含在通用模型的训练数据中。LLM 通常以聊天机器人的形式生成这类文本。
情感分析 :LLM 可以处理文本并确定其表达的是积极、消极还是中性的情感。
语言翻译:LLM 可以翻译跨语言和地域的文本。然而,并非所有的 LLM 都经过多语言数据的训练。
除了基本功能外,如果没有访问外部工具的能力,LLM 无法成功运行任何需要实时信息的用户查询。为了给 LLM 提供产生更有意义结果的机会,可以引入工具集成。提供外部工具,如网络搜索、数据集和 API,允许 LLM 扩展其训练数据之外的能力。
再进一步,我们可以通过使用 LLM 及其可用工具来构建 AI 代理。总结来说,代理系统为 LLM 提供了一套工具,允许模型确定适当的工具使用,适应变化的环境,并根据工具输出形成综合结论。然而,在规模化应用时,这些 AI 系统往往会失败。因此,Anthropic 于 2024 年引入了 MCP,为 AI 工具交互建立了开放标准。2
MCP 建立了一个标准
将外部服务连接到 LLM 非常繁琐。想象一下将电机连接到各种电源的电路。MCP 就像这个电路的布线和配电盘;它决定了什么电流(信息)流向电机(AI 模型)。工具输出或模型上下文可以与输入电流相类比——它是从电源流出的电压,可以包括记忆、工具和过去的发现。
作为配电盘,MCP 决定连接哪些电源(工具输出或上下文)以及何时连接,调节电流(信息流),过滤和优先排序输入。它这样做是为了确保只有相关的线路被通电(加载相关的上下文),并管理电路的定时和路由,以避免系统过载。
就像精心设计的电路可以防止过载并确保高效用电一样,MCP 作为连接器,确保上下文得到高效、相关和结构化的使用,以实现 AI 模型的最佳性能。
MCP 为 AI 工程师建立了一个新的 开源 标准。然而,标准在软件行业并非新概念。例如,REST API 在整个行业都是标准的 API 提供方式;通过遵循 REST 设计原则的架构约束,它为应用程序之间的数据交换通过 HTTP 请求提供了一致性。
类似地,MCP 通过设定标准来统一 LLM 和外部服务,实现高效通信。这个标准允许“即插即用”的工具使用,而不是为每个工具的定制集成编写代码。
重要的是要记住 MCP 不是一个代理框架,而是一个标准化的集成层,用于代理访问工具。MCP 可以补充像 LangChain、LangGraph、BeeAI、LlamaIndex 和 crewAI 这样的代理编排框架,但它并不取代它们;MCP 不会决定何时调用工具以及调用工具的用途。
MCP 简单地提供了一种标准化的连接,以简化工具集成。最终,LLM 根据用户请求的上下文来确定调用哪些工具。
MCP 架构
MCP 客户端/服务器模型可以分解为三个关键架构组件:
MCP 主机
一个 AI 应用程序接收用户请求并通过 MCP 寻求访问上下文。这可以是 Cursor 或 Claude 桌面等 IDE。这个主机组件包含编排逻辑,可以将每个客户端连接到服务器。
MCP 客户端
在 MCP 生态系统中,主机和服务器之间的通信必须通过客户端进行。该客户端存在于主机中,并将用户请求转换为开放协议可以处理的格式。一个 MCP 主机可以存在多个客户端,但每个客户端与一个 MCP 服务器之间存在 1:1 的关系。
MCP 客户端的例子有 IBM® BeeAI、Microsoft Copilot Studio、Claude.ai、Windsurf Editor 和 Postman。客户端作为会话管理器,处理中断、超时、重新连接和会话关闭。客户端还解析响应、执行错误处理,并确保响应与上下文相关且适当。
MCP 服务器
外部服务,通过将用户请求转换为服务器操作,为 LLM 提供上下文。MCP 服务器的集成示例包括 Slack、GitHub、Git、Docker 或网络搜索。这些服务器通常是 GitHub 存储库,可用多种编程语言(C#、Java™、TypeScript、Python 等)编写,并提供对 MCP 工具的访问。
通常可以在这些 GitHub 存储库中找到教程,以帮助技术实现。MCP 服务器还可以用于通过 IBM 和 OpenAI 等 AI 平台提供商,将 LLM 推理连接到 MCP SDK。这样做会为客户创建一个可重用的 MCP 服务,客户可以将其作为“标准化”的聊天工具来调用。
MCP 服务器非常灵活,因为它们允许连接到内部和外部资源及工具。根据 Anthropic 提供的文档,模型上下文协议服务器通过以下方式暴露数据:
资源 :从内部或外部数据库检索信息。资源返回数据,但不执行可操作的计算。
工具 :与能够执行副作用(如计算或通过 API 请求获取数据)的工具进行信息交换。
提示 :用于 LLM 服务器通信的可重用模板和工作流程。
客户端和服务器之间的传输层负责双向消息转换。在客户端到服务器的流中,MCP 协议消息被转换为 JSON-RPC 格式,允许传输多个数据结构及其处理规则。
在反向的服务器到客户端流中,收到的 JSON-RPC 格式的消息被转换回 MCP 协议消息 9。三种 JSON-RPC 消息类型包括请求、响应和通知。请求需要服务器的响应,而通知则不需要。
2.2 通信协议
MCP 基于 JSON-RPC 2.0 消息格式,采用状态化连接,支持服务器和客户端之间的能力协商。其通信协议具有以下特点:
- 消息类型:包括请求(Request)、结果(Result)、通知(Notification)和错误(Error)四种主要消息类型,支持请求-响应模式和单向通知模式。
- 传输机制:支持多种传输方式,如标准输入/输出(Stdio)传输,适用于本地进程间通信;HTTP 与服务器发送事件(SSE)传输,适用于远程通信场景。
- 连接生命周期:包括初始化、消息交换和终止三个阶段。在初始化阶段,客户端发送初始化请求,服务器响应协议版本和能力声明,随后进入正常消息交换阶段,直到连接被任一方终止。
2.3 功能模块
MCP 提供了丰富的功能模块,以满足不同场景下的需求:
2.3.1 资源(Resources)
资源是 MCP 中的核心原语之一,允许服务器向客户端暴露数据和内容。资源可以是文件内容、数据库记录、API 响应、实时系统数据、截图和图像、日志文件等。每个资源通过唯一的 URI 进行标识,可以包含文本或二进制数据。客户端可以通过资源列表(resources/list)端点发现可用资源,并通过资源模板(resource templates)构造动态资源 URI。读取资源时,客户端发送 resources/read 请求,服务器返回资源内容。MCP 还支持通过资源列表变更通知(resources/list_changed)和内容变更通知(resources/updated)实现资源的实时更新。
2.3.2 提示(Prompts)
提示是预定义的模板,允许服务器定义可重用的提示模板和工作流。提示可以接受动态参数,包含来自资源的上下文,链式调用多个交互,引导特定工作流,并作为 UI 元素(如斜杠命令)呈现。客户端通过 prompts/list 端点发现可用提示,并通过 prompts/get 请求使用提示。提示可以是动态的,包含嵌入的资源上下文和多步骤工作流。
2.3.3 工具(Tools)
工具是 MCP 中的另一个强大原语,允许服务器向客户端暴露可执行功能。工具可以是简单的计算操作或复杂的 API 交互。客户端通过 tools/list 端点发现可用工具,并通过 tools/call 端点调用工具。工具具有动态性,可以修改状态或与外部系统交互。每个工具通过唯一名称标识,并包含描述以指导其使用。
2.3.4 采样(Sampling)
采样是 MCP 的一项关键功能,允许服务器通过客户端请求 LLM 完成,从而实现复杂的代理行为,同时保持安全性和隐私性。采样流程遵循以下步骤:服务器发送 sampling/createMessage 请求,客户端审查并修改请求,从 LLM 采样,审查完成结果,并将结果返回服务器。采样请求包含对话历史、模型偏好、系统提示、上下文包含参数和采样参数等信息。客户端返回完成结果,包括文本或图像内容、采样参数和模型信息等。
2.3.5 根(Roots)
根是 MCP 中定义服务器操作边界的概念。客户端向服务器建议根 URI,告知服务器应关注的资源和位置。根主要用于文件系统路径,但也可以是任何有效 URI,包括 HTTP URL。根的使用有助于指导服务器操作、明确资源范围和组织工作空间。客户端在连接时声明根能力,并向服务器提供建议根列表,同时在根变更时通知服务器。
2.4 安全与信任
MCP 在设计上高度重视安全性和用户隐私,提出了以下关键原则:
- 用户同意与控制:用户必须明确同意并理解所有数据访问和操作,保留对共享数据和执行操作的控制权。实现者应提供清晰的 UI,用于审查和授权活动。
- 数据隐私:宿主在将用户数据暴露给服务器之前必须获得明确的用户同意,不得在未经用户同意的情况下将资源数据传输到其他地方。用户数据应受到适当的访问控制保护。
- 工具安全性:工具代表任意代码执行,必须谨慎对待。宿主在调用任何工具之前必须获得用户的明确同意,用户应在授权使用工具之前了解其功能。
- LLM 采样控制:用户必须明确批准任何 LLM 采样请求,并控制是否进行采样、发送的实际提示内容以及服务器可以查看的结果。协议有意限制服务器对提示的可见性。
3. 项目实战案例
3.1 案例一:构建 AI 助理应用
3.1.1 需求分析
本案例旨在构建一个 AI 助理应用,能够帮助用户管理日常任务、处理文档和与外部服务交互。具体需求包括:
- 读取和分析用户上传的文档,提取关键信息。
- 与用户的日历应用集成,自动安排会议和提醒。
- 提供智能问答功能,回答用户关于文档内容的问题。
- 支持与第三方 API(如天气预报、新闻服务)交互,获取实时信息。
3.1.2 系统设计
基于 MCP 架构,系统设计如下:
- 宿主应用:作为 AI 助理的主程序,负责协调客户端与服务器之间的通信,管理用户会话和权限。
- 文档处理服务器:负责处理用户上传的文档,提供文档内容的资源访问接口。
- 日历集成服务器:与用户的日历应用集成,提供会议安排和提醒功能。
- 第三方 API 服务器:封装第三方 API,提供实时数据获取功能。
- 提示与工具服务器:定义常用的提示模板和工具,供 AI 助理调用。
3.1.3 开发步骤
3.1.3.1 文档处理服务器开发
- 创建 MCP 服务器:使用 MCP SDK(如 TypeScript SDK)创建文档处理服务器。
- 定义资源:为文档内容定义资源类型,包括文本和二进制资源。
- 实现资源读取功能:通过 resources/read 请求处理函数,实现文档内容的读取和返回。
- 支持资源更新通知:实现资源列表变更和内容变更通知功能,使客户端能够实时获取文档更新。
3.1.3.2 日历集成服务器开发
- 集成日历 API:使用日历应用提供的 API,实现会议查询、创建和更新功能。
- 定义工具:创建用于安排会议和设置提醒的工具,定义工具参数和返回值结构。
- 实现工具调用逻辑:在 tools/call 请求处理函数中,实现与日历 API 的交互逻辑。
- 提供提示模板:创建与日历操作相关的提示模板,如“安排会议”、“添加提醒”等。
3.1.3.3 第三方 API 服务器开发
- 封装第三方 API:针对天气预报、新闻服务等第三方 API,进行封装和适配。
- 定义工具:为每个第三方服务创建相应的工具,如“获取天气信息”、“获取新闻头条”等。
- 实现工具调用逻辑:在 tools/call 请求处理函数中,实现与第三方 API 的通信逻辑。
- 处理错误和异常:确保工具能够正确处理 API 调用中的错误和异常情况。
3.1.3.4 提示与工具服务器开发
- 收集常用提示和工具:分析用户需求,收集常用的提示模板和工具,如“文档摘要”、“问答助手”等。
- 定义提示结构:为每个提示定义名称、描述、参数和示例。
- 实现提示调用逻辑:在 prompts/get 请求处理函数中,返回相应的提示内容。
- 组织工具和提示:将工具和提示进行分类和组织,便于客户端发现和使用。
3.1.3.5 宿主应用开发
- 集成 MCP 客户端:在宿主应用中集成 MCP 客户端 SDK,实现与 MCP 服务器的通信。
- 实现客户端-服务器连接:根据用户配置和授权,建立与各个 MCP 服务器的连接。
- 开发用户界面:设计和实现用户界面,包括文档上传、日历查看、问答交互等功能模块。
- 处理用户请求:根据用户输入,调用相应的 MCP 服务器功能,如读取文档、安排会议、获取实时信息等。
- 展示结果:将 MCP 服务器返回的结果进行处理和格式化,以友好的方式展示给用户。
3.1.4 测试与优化
- 功能测试:对各个 MCP 服务器和宿主应用的功能进行全面测试,确保其满足需求并正常工作。
- 性能测试:评估系统在高负载情况下的性能表现,优化资源读取、工具调用和网络通信等环节。
- 安全测试:验证系统的安全性,包括用户授权、数据加密、工具调用限制等方面。
- 用户体验测试:收集用户反馈,优化用户界面和交互流程,提高用户体验。
- 持续迭代:根据测试结果和用户反馈,持续改进系统功能和性能,修复发现的问题和漏洞。
3.2 案例二:智能 IDE 集成
3.2.1 需求分析
本案例的目标是为开发者构建一个智能 IDE 插件,利用 LLM 提供代码补全、代码审查、文档生成和错误诊断等功能。具体需求包括:
- 代码补全:根据当前代码上下文,提供智能代码补全建议。
- 代码审查:分析代码质量,检测潜在问题并提供改进建议。
- 文档生成:自动生成代码注释和文档,提高代码可读性。
- 错误诊断:协助开发者快速定位和解决代码中的错误和异常。
3.2.2 系统设计
基于 MCP 架构,系统设计如下:
- IDE 宿主插件:作为智能 IDE 功能的宿主应用,集成在开发者常用的 IDE(如 Visual Studio Code、IntelliJ IDEA)中,负责与 MCP 服务器通信和用户交互。
- 代码分析服务器:负责分析代码文件,提供代码补全、代码审查和错误诊断功能。
- 文档生成服务器:专注于生成代码注释和文档,提供模板和上下文感知功能。
- 知识库服务器:整合编程语言文档、API 参考和最佳实践等知识库,为代码分析和文档生成提供支持。
3.2.3 开发步骤
3.2.3.1 代码分析服务器开发
- 创建 MCP 服务器:使用 MCP SDK 创建代码分析服务器。
- 定义资源:为代码文件定义资源类型,支持多种编程语言和文件格式。
- 实现代码分析功能:
- 代码补全:通过分析当前代码上下文,提供补全建议。可以使用 LLM 生成补全代码片段,结合静态代码分析提高准确性。
- 代码审查:检测代码中的潜在问题,如变量未使用、代码重复、安全性问题等。利用 LLM 理解代码逻辑和语义,提供详细的改进建议。
- 错误诊断:分析代码错误和异常情况,提供可能的原因和解决方案。结合 LLM 对错误信息的理解和知识库中的解决方案,帮助开发者快速定位问题。
- 定义工具:创建用于代码分析的工具,如“检查代码质量”、“诊断错误”等,定义工具参数和返回值结构。
- 实现工具调用逻辑:在 tools/call 请求处理函数中,实现代码分析和处理逻辑,调用 LLM 和静态代码分析工具进行综合分析。
3.2.3.2 文档生成服务器开发
- 创建 MCP 服务器:使用 MCP SDK 创建文档生成服务器。
- 定义提示模板:为代码注释和文档生成创建提示模板,包含动态参数以适应不同的代码结构和内容。
- 实现文档生成逻辑:
- 代码注释生成:根据代码内容和上下文,生成清晰、准确的注释。利用 LLM 理解代码功能和语义,生成自然语言描述。
- API 文档生成:为函数、类和模块生成详细的 API 文档,包括参数说明、返回值描述和示例代码。
- 支持资源上下文:允许文档生成服务器访问代码文件资源,获取最新代码内容作为生成文档的上下文。
- 提供实时更新:当代码文件更新时,通过资源变更通知机制,实时更新生成的文档内容。
3.2.3.3 知识库服务器开发
- 整合知识库内容:收集和整理编程语言文档、API 参考、最佳实践、代码示例等知识库内容。
- 定义资源:将知识库内容组织为资源,支持全文搜索和分类浏览。
- 实现知识检索功能:通过 resources/list 和 resources/read 请求处理函数,实现知识库内容的检索和返回。
- 支持全文搜索:提供搜索功能,允许开发者快速查找所需的知识库条目。
- 结合 LLM 提供智能答案:当开发者提出问题时,利用 LLM 结合知识库内容生成智能答案,提供详细的解释和示例。
3.2.3.4 IDE 宿主插件开发
- 集成 MCP 客户端:在 IDE 插件中集成 MCP 客户端 SDK,实现与 MCP 服务器的通信。
- 开发 IDE 集成功能:
- 代码编辑器集成:在代码编辑器中显示代码补全建议、审查结果和错误诊断信息。
- 文档查看器:集成文档查看器,显示生成的代码注释和 API 文档。
- 知识库搜索面板:提供知识库搜索面板,方便开发者快速查找和浏览知识库内容。
- 处理用户交互:根据用户的编辑操作和查询请求,调用相应的 MCP 服务器功能。
- 优化性能和用户体验:确保插件在 IDE 中运行流畅,不影响开发者的正常编码工作。优化用户界面布局和交互方式,提高易用性和效率。
3.2.4 测试与优化
- 功能测试:对代码补全、代码审查、文档生成和知识库检索等功能进行全面测试,确保其准确性和可靠性。
- 性能测试:评估插件在大型代码库和复杂项目中的性能表现,优化代码分析和文档生成速度。
- 集成测试:测试插件与 IDE 的集成效果,确保其与 IDE 的其他功能(如版本控制、调试器)协同工作良好。
- 用户体验测试:收集开发者反馈,优化用户界面和交互流程,提高插件的易用性和实用性。
- 持续迭代:根据测试结果和用户反馈,持续改进插件功能和性能,修复发现的问题和漏洞,定期更新知识库内容。
4. MCP 开发实践
4.1 开发环境搭建
4.1.1 安装 MCP SDK
MCP 提供了多种语言的 SDK,包括 TypeScript、Python 和 Java 等。以 TypeScript SDK 为例,可以通过 npm 进行安装:
npm install @mcp-ts/sdk
4.1.2 创建开发项目
创建一个新的开发项目,初始化项目结构,并引入必要的依赖项。根据所选语言和 SDK,配置项目的构建工具和开发环境。
4.2 服务器开发
4.2.1 初始化服务器
使用 MCP SDK 创建服务器实例,并配置服务器的基本信息,如名称、版本和描述。
import { Server } from '@mcp-ts/sdk';
const server = new Server({
name: 'Document Processing Server',
version: '1.0.0',
description: 'Provides document processing capabilities',
});
4.2.2 定义资源和工具
根据服务器的功能需求,定义可用的资源和工具。为每个资源和工具指定唯一的名称、描述和参数结构。
// 定义资源
server.defineResource({
name: 'documentContent',
description: 'Content of a document',
contentType: 'text/plain',
});
// 定义工具
server.defineTool({
name: 'summarizeDocument',
description: 'Summarizes the content of a document',
parameters: {
documentUri: { type: 'string', description: 'URI of the document to summarize' },
},
returns: { type: 'string', description: 'Summary of the document' },
});
4.2.3 实现请求处理逻辑
为资源读取、工具调用等请求实现具体的处理逻辑。在处理函数中,执行相应的操作并返回结果。
// 实现资源读取逻辑
server.handle('resources/read', async (request) => {
const { uri } = request.params;
// 根据 URI 读取文档内容
const content = await readDocumentContent(uri);
return { content };
});
// 实现工具调用逻辑
server.handle('tools/call', async (request) => {
const { toolName, parameters } = request.params;
if (toolName === 'summarizeDocument') {
const { documentUri } = parameters;
// 读取文档内容
const content = await readDocumentContent(documentUri);
// 使用 LLM 生成摘要
const summary = await generateSummary(content);
return { result: summary };
}
});
4.2.4 启动服务器
配置服务器的传输机制(如 Stdio 或 HTTP),并启动服务器以监听客户端连接。
// 使用 Stdio 传输
server.useStdioTransport();
// 启动服务器
server.start();
4.3 客户端开发
4.3.1 初始化客户端
创建 MCP 客户端实例,并配置客户端的传输机制和服务器连接信息。
import { Client } from '@mcp-ts/sdk';
const client = new Client({
transport: 'stdio', // 或 'http'
});
4.3.2 发现和连接服务器
客户端通过发现机制查找可用的 MCP 服务器,并建立连接。可以根据服务器的功能和能力进行筛选。
// 发现服务器
const servers = await client.discoverServers();
// 连接到特定服务器
const server = servers.find(s => s.name === 'Document Processing Server');
if (server) {
await client.connect(server);
}
4.3.3 使用资源和工具
通过客户端调用服务器的资源读取和工具调用功能,获取所需的数据和执行操作。
// 读取资源
const resourceUri = 'file:///path/to/document.txt';
const resourceContent = await client.readResource(resourceUri);
// 调用工具
const summary = await client.callTool('summarizeDocument', {
documentUri: resourceUri,
});
4.3.4 处理服务器通知
客户端可以订阅服务器的通知,以实时获取资源更新、工具变更等信息。
// 订阅资源更新通知
client.subscribeToResourceUpdates(resourceUri, (update) => {
console.log('Resource updated:', update);
});
// 订阅工具变更通知
client.subscribeToToolChanges((tools) => {
console.log('Tools updated:', tools);
});
4.4 调试与监控
4.4.1 日志记录
在服务器和客户端中启用日志记录,跟踪协议事件、消息流程、性能指标和错误信息。
// 启用服务器日志
server.enableLogging({
level: 'debug',
output: process.stdout,
});
// 启用客户端日志
client.enableLogging({
level: 'debug',
output: process.stdout,
});
4.4.2 健康检查
实现健康检查功能,监测服务器和客户端的连接状态、资源使用情况和性能表现。
// 服务器健康检查
server.addHealthCheck(async () => {
// 检查服务器状态
const status = await checkServerStatus();
return { healthy: status === 'running' };
});
// 客户端健康检查
client.addHealthCheck(async () => {
// 检查客户端状态
const status = await checkClientStatus();
return { healthy: status === 'connected' };
});
4.4.3 性能分析
使用性能分析工具,评估 MCP 通信的延迟、吞吐量和资源消耗,优化系统性能。
// 服务器性能分析
server.addPerformanceMonitor(async (metrics) => {
// 收集性能指标
const latency = await measureLatency();
const throughput = await measureThroughput();
metrics.add('latency', latency);
metrics.add('throughput', throughput);
});
// 客户端性能分析
client.addPerformanceMonitor(async (metrics) => {
// 收集性能指标
const latency = await measureLatency();
const throughput = await measureThroughput();
metrics.add('latency', latency);
metrics.add('throughput', throughput);
});
5. MCP 安全与优化
5.1 安全实践
5.1.1 传输安全
- 使用 TLS 加密:对于远程连接,启用 TLS 加密以保护数据在传输过程中的安全性。
- 验证连接来源:在服务器端验证客户端的连接来源,确保只有授权的客户端能够建立连接。
- 实施身份验证:根据需要实现身份验证机制,如 API 密钥、OAuth 等,进一步增强安全性。
5.1.2 消息验证
- 验证所有输入消息:对客户端发送的每条消息进行彻底验证,确保其符合预期的格式和内容。
- 清理输入数据:对输入数据进行清理和转义,防止代码注入、跨站脚本攻击等安全威胁。
- 检查消息大小限制:限制消息大小,防止恶意客户端通过发送过大的消息导致服务器资源耗尽。
5.1.3 资源保护
- 实施访问控制:为资源访问实施严格的访问控制策略,确保只有授权用户和客户端能够访问敏感资源。
- 验证资源路径:对资源路径进行验证,防止目录遍历攻击和路径注入漏洞。
- 监控资源使用:实时监控资源的使用情况,检测异常访问模式和资源滥用行为。
- 实施请求速率限制:对资源访问请求进行速率限制,防止暴力破解和拒绝服务攻击。
5.1.4 错误处理
- 避免泄露敏感信息:在错误响应中避免包含敏感信息,如堆栈跟踪、数据库错误详情等。
- 记录安全相关错误:对安全相关的错误进行详细记录,便于后续分析和审计。
- 实施适当的清理操作:在发生错误时,确保进行适当的资源清理和状态恢复,防止系统处于不一致状态。
- 处理拒绝服务(DoS)场景:实现防 DoS 机制,如流量限制、连接数限制等,保护服务器免受恶意攻击。
5.2 性能优化
5.2.1 资源缓存
- 缓存资源内容:对频繁访问的资源内容进行缓存,减少对原始数据源的重复读取,提高响应速度。
- 设置合理的缓存策略:根据资源的更新频率和重要性,设置合适的缓存过期时间,确保缓存内容的时效性。
5.2.2 异步处理
- 采用异步 I/O 操作:在资源读取、工具调用等 I/O 密集型操作中,使用异步编程模型,提高服务器的并发处理能力。
- 实现异步任务队列:对耗时的操作进行异步处理,将任务放入队列中,逐步执行并通知客户端结果。
5.2.3 消息压缩
- 启用消息压缩:对于大数据量的传输,启用消息压缩功能,减少网络传输的字节数,提高通信效率。
- 选择合适的压缩算法:根据数据类型和压缩需求,选择合适的压缩算法,如 gzip、zlib 等,在压缩比和性能之间取得平衡。
5.2.4 优化 LLM 调用
- 合理设置采样参数:根据应用场景调整 LLM 采样的温度、最大令牌数等参数,在生成质量和性能之间进行权衡。
- 批量处理请求:将多个小请求合并为一个批量请求,减少 LLM 调用的次数和开销。
- 缓存 LLM 结果:对重复的 LLM 请求结果进行缓存,避免多次调用相同的请求。
6. 结论与展望
6.1 研究总结
本文深入研究了 Model Context Protocol(MCP)的技术原理和项目实战应用。通过分析 MCP 的核心架构、通信机制、功能模块及安全特性,结合实际案例的详细阐述,展示了 MCP 在构建智能、高效的 AI 应用方面的强大能力。研究结果表明,MCP 作为一种开放的标准化协议,有效地解决了 LLM 应用与外部数据源和工具集成的难题,降低了开发成本,提高了系统的可扩展性和可维护性。
6.2 未来展望
在客户端和服务器之间的传输层中,MCP 协议有两种主要的传输方法,这两种方法都使用 JSON-RPC 2.0 格式传输消息。第一种是标准输入/输出(stdio),由于其简单的输入/输出信息传输方式,最适合集成本地资源。这种格式用于轻量级的同步消息。4 这些资源包括本地文件系统、数据库和本地 API。
第二种是服务器发送事件(SSE),它最适合集成远程资源。HTTP POST 请求作为客户端到服务器消息传输的机制,而 SSE 用于反向传输。这种格式可用于同时处理多个异步、事件驱动的服务器调用。4
MCP 的优势
想象一下现实中的 AI 助手根据你的邮箱日程安排与客户的会议,向你发送股市价格更新,并触发短信总结过去一小时内收到的 Slack 消息。每个服务提供商构建的 API 都不同,它们需要不同的信息来传递,返回不同的输出模式等等。因此,这些工具的微小变化都可能导致整个 AI 工作流程基础设施的崩溃。
工程师还需要承担大量手动构建这些工具连接、 调试以及维护认证信息(如 API 密钥和工具权限)的工作。工具通常依赖于其他工具的输出,并且存在许多边缘情况,在这些情况下这些连接会失败。
因此,提供 MCP 集成作为 LLM 和开发工具之间的中间层至关重要。在这一层中,MCP 可以将工具输出转换为模型可以理解的方式。无需在 CLI 之间切换,工具集成都在一个地方发生。
MCP 有许多实际应用场景。例如,MCP 可以通过共享工作空间和一套通用工具来改进多智能体编排和通信,而不是需要直接集成。
MCP 也可以用于补充 检索增强生成 (RAG)。与其向检索器提供用于搜索向量存储或知识库的检索器,MCP 可以通过服务器操作连接到 向量数据库 。将数据库作为工具进行搜索,而不是在每次 LLM 调用时传递检索器,允许更策略性地使用该工具。这种方法还允许在数据检索后进行进一步的 工具调用 。
MCP 的未来
MCP 是 LLM 工具集成中的一项新兴发展,随着时间的推移将成熟和转变。随着技术挑战的出现和 MCP 服务器的开发,该标准可能会适应,MCP 将得到改进。
无论如何,标准化的工具集成对于 AI 代理自主运行和动态适应现实世界环境至关重要。 借助 MCP,我们可以简化复杂代理工作流程的自动化,以减少人工监督。反过来,这使得我们能够将时间投入到更需要人类智慧和直觉的精细任务上。
随着 AI 技术的不断发展和应用场景的日益丰富,MCP 有望在以下几个方面取得进一步的发展和演进:
- 功能增强:MCP 将不断扩展其功能模块,支持更多的数据类型、工具类型和集成场景,满足不断增长的业务需求。
- 性能优化:通过持续的性能优化和技术创新,MCP 将进一步提高通信效率和处理能力,适应大规模、高并发的应用场景。
- 安全强化:随着安全威胁的日益复杂,MCP 将加强安全机制和防护措施,确保数据传输和系统运行的安全性。
- 生态系统扩展:鼓励更多的开发者参与 MCP 服务器的开发和共享,丰富集成生态系统,推动 MCP 在各个领域的广泛应用。
总之,MCP 作为连接 LLM 应用与外部世界的桥梁,具有广阔的发展前景和应用潜力。我们期待 MCP 在未来能够不断进化和完善,为 AI 应用的创新和发展提供更强大的支持。
本文通过对 MCP 技术原理的深入剖析和项目实战案例的详细阐述,为读者呈现了 MCP 的全貌及其在实际应用中的价值。希望本文能够为研究人员、开发者及技术决策者提供有价值的参考,促进 MCP 技术的广泛应用和发展。
参考文献
[1] Model Context Protocol 官方文档 [Online]. Available: https://modelcontextprotocol.io/
[2] MCP Specification [Online]. Available: https://modelcontextprotocol.io/specification/2025-03-26
[3] MCP Architecture [Online]. Available: https://modelcontextprotocol.io/specification/2025-03-26/architecture
[4] MCP Resources [Online]. Available: https://modelcontextprotocol.io/docs/concepts/resources
[5] MCP Prompts [Online]. Available: https://modelcontextprotocol.io/docs/concepts/prompts
[6] MCP Tools [Online]. Available: https://modelcontextprotocol.io/docs/concepts/tools
[7] MCP Sampling [Online]. Available: https://modelcontextprotocol.io/docs/concepts/sampling
[8] MCP Roots [Online]. Available: https://modelcontextprotocol.io/docs/concepts/roots