题目:Transformer-LSTM-SVM回归
文章目录
- 题目:Transformer-LSTM-SVM回归
- 前言一:Transformer
- 1. Transformer的原理
- 1.1 Transformer的核心结构
- 1.2 注意力机制
- 1.4 位置编码
- 1.5 损失函数
- 2. 完整案例
- LSTM
- SVM
前言一:Transformer
1. Transformer的原理
Transformer是一种基于注意力机制的深度学习模型,最早由Vaswani等人在2017年的论文《Attention Is All You Need》中提出。它主要用于序列建模任务,如:自然语言处理和时间序列预测。
1.1 Transformer的核心结构
Transformer主要由两部分组成:
- 编码器:处理输入数据,将其转化为高维向量表示。
- 解码器:根据编码的输出和目标序列生成结果。
解码器
包含
N
N
N层,每一层都由两个子层组成:
- 多头注意力机制。
- 前向全连接网络。
使用残差连接和层归一化以提高训练效率。
解码器
包含 N N N层,每一层都由两个子层组成:
- 多头注意力机制。
- 编码器-解码器注意力机制。
- 前向全连接网络。
使用残差连接和层归一化以提高训练效率。
1.2 注意力机制
注意力得分计算
Attention
(
Q
,
K
,
V
)
=
softmax
(
Q
K
T
d
k
V
)
\text{Attention}\left(Q,K,V\right)=\text{softmax}\left(\frac{QK^T}{\sqrt{d_k}}V\right)
Attention(Q,K,V)=softmax(dkQKTV)
- Q Q Q是查询向量。
- K K K键向量。
- V V V值向量。
- d k d_k dk:向量维度
多头注意力
多头注意力是将输入分成多组,独立计算每组的注意力,然后拼接在一起:
MultiHead
(
Q
,
K
,
V
)
=
Concat
(
h
e
a
d
1
,
h
e
a
d
2
,
…
,
h
e
a
d
n
)
W
O
\text{MultiHead}\left( Q,K,V\right)=\text{Concat}\left(head_1,head_2,\dots ,head_n\right)W^O
MultiHead(Q,K,V)=Concat(head1,head2,…,headn)WO
每个头的计算如下:
h
e
a
d
i
=
Attention
(
Q
W
i
Q
,
K
W
i
K
,
V
W
i
V
)
head_i=\text{Attention}\left(QW_{i}^{Q},KW_{i}^{K},VW_{i}^{V}\right)
headi=Attention(QWiQ,KWiK,VWiV)
- W i Q , W i K , W i V W_{i}^{Q},W_{i}^{K},W_{i}^{V} WiQ,WiK,WiV:学习参数矩阵
1.4 位置编码
由于Transformer没有循环结构,如RNN,无法显试捕获序列顺序信息,因此引入位置编码:
P
E
(
p
o
s
,
2
i
)
=
sin
(
p
o
s
1000
0
2
i
d
)
PE\left(pos,2i\right)=\text{sin}\left(\frac{pos}{10000^{\frac{2i}{d}}}\right)
PE(pos,2i)=sin(10000d2ipos)
P
E
(
p
o
s
,
2
i
+
1
)
=
cos
(
p
o
s
1000
0
2
i
d
)
PE\left(pos,2i+1\right)=\text{cos}\left(\frac{pos}{10000^{\frac{2i}{d}}}\right)
PE(pos,2i+1)=cos(10000d2ipos)
- p o s pos pos:序列中的位置。
- d d d:嵌入向量的维度。
1.5 损失函数
Transformer常常使用交叉熵损失:
L
=
−
1
N
∑
i
=
1
N
∑
j
=
1
C
y
i
j
ln
(
y
i
j
^
)
\mathcal{L}=-\frac{1}{N}\sum_{i=1}^{N}\sum_{j=1}^{C}y_{ij}\text{ln}\left(\hat{y_{ij}}\right)
L=−N1i=1∑Nj=1∑Cyijln(yij^)
- y i j y_{ij} yij:真实标签。
- y i j ^ \hat{y_{ij}} yij^:模型预测概率。
2. 完整案例
导入包
import torch
import torch.nn as nn
import torch.utils.data as Data
import numpy as np
from torch import optim
import random
from tqdm import *
import matplotlib.pyplot as plt
数据集生成
# 数据集生成
soundmark = ['ei', 'bi:', 'si:', 'di:', 'i:', 'ef', 'dʒi:', 'eit∫', 'ai', 'dʒei', 'kei', 'el', 'em', 'en', 'əu', 'pi:', 'kju:',
'ɑ:', 'es', 'ti:', 'ju:', 'vi:', 'd∧blju:', 'eks', 'wai', 'zi:']
alphabet = ['a','b','c','d','e','f','g','h','i','j','k','l','m','n','o','p','q',
'r','s','t','u','v','w','x','y','z']
t = 1000 #总条数
r = 0.9 #扰动项
seq_len = 6
src_tokens, tgt_tokens = [],[] #原始序列、目标序列列表
for i in range(t):
src, tgt = [],[]
for j in range(seq_len):
ind = random.randint(0,25)
src.append(soundmark[ind])
if random.random() < r:
tgt.append(alphabet[ind])
else:
tgt.append(alphabet[random.randint(0,25)])
src_tokens.append(src)
tgt_tokens.append(tgt)
src_tokens[:2], tgt_tokens[:2]
from collections import Counter # 计数类
flatten = lambda l: [item for sublist in l for item in sublist] # 展平数组
# 构建词表
class Vocab:
def __init__(self, tokens):
self.tokens = tokens # 传入的tokens是二维列表
self.token2index = {'<pad>': 0, '<bos>': 1, '<eos>': 2, '<unk>': 3} # 先存好特殊词元
# 将词元按词频排序后生成列表
self.token2index.update({
token: index + 4
for index, (token, freq) in enumerate(
sorted(Counter(flatten(self.tokens)).items(), key=lambda x: x[1], reverse=True))
})
# 构建id到词元字典
self.index2token = {index: token for token, index in self.token2index.items()}
def __getitem__(self, query):
# 单一索引
if isinstance(query, (str, int)):
if isinstance(query, str):
return self.token2index.get(query, 3)
elif isinstance(query, (int)):
return self.index2token.get(query, '<unk>')
# 数组索引
elif isinstance(query, (list, tuple)):
return [self.__getitem__(item) for item in query]
def __len__(self):
return len(self.index2token)
构造数据集
from torch.utils.data import DataLoader, TensorDataset
#实例化source和target词表
src_vocab, tgt_vocab = Vocab(src_tokens), Vocab(tgt_tokens)
src_vocab_size = len(src_vocab) # 源语言词表大小
tgt_vocab_size = len(tgt_vocab) # 目标语言词表大小
#增加开始标识<bos>和结尾标识<eos>
encoder_input = torch.tensor([src_vocab[line + ['<pad>']] for line in src_tokens])
decoder_input = torch.tensor([tgt_vocab[['<bos>'] + line] for line in tgt_tokens])
decoder_output = torch.tensor([tgt_vocab[line + ['<eos>']] for line in tgt_tokens])
# 训练集和测试集比例8比2,batch_size = 16
train_size = int(len(encoder_input) * 0.8)
test_size = len(encoder_input) - train_size
batch_size = 16
# 自定义数据集函数
class MyDataSet(Data.Dataset):
def __init__(self, enc_inputs, dec_inputs, dec_outputs):
super(MyDataSet, self).__init__()
self.enc_inputs = enc_inputs
self.dec_inputs = dec_inputs
self.dec_outputs = dec_outputs
def __len__(self):
return self.enc_inputs.shape[0]
def __getitem__(self, idx):
return self.enc_inputs[idx], self.dec_inputs[idx], self.dec_outputs[idx]
train_loader = DataLoader(MyDataSet(encoder_input[:train_size], decoder_input[:train_size], decoder_output[:train_size]), batch_size=batch_size)
test_loader = DataLoader(MyDataSet(encoder_input[-test_size:], decoder_input[-test_size:], decoder_output[-test_size:]), batch_size=1)
位置编码
def get_sinusoid_encoding_table(n_position, d_model):
def cal_angle(position, hid_idx):
return position / np.power(10000, 2 * (hid_idx // 2) / d_model)
def get_posi_angle_vec(position):
return [cal_angle(position, hid_j) for hid_j in range(d_model)]
sinusoid_table = np.array([get_posi_angle_vec(pos_i) for pos_i in range(n_position)])
sinusoid_table[:, 0::2] = np.sin(sinusoid_table[:, 0::2]) # 偶数位用正弦函数
sinusoid_table[:, 1::2] = np.cos(sinusoid_table[:, 1::2]) # 奇数位用余弦函数
return torch.FloatTensor(sinusoid_table)
print(get_sinusoid_encoding_table(30, 512))
掩码操作
# mask掉没有意义的占位符
def get_attn_pad_mask(seq_q, seq_k): # seq_q: [batch_size, seq_len] ,seq_k: [batch_size, seq_len]
batch_size, len_q = seq_q.size()
batch_size, len_k = seq_k.size()
pad_attn_mask = seq_k.data.eq(0).unsqueeze(1) # 判断 输入那些含有P(=0),用1标记 ,[batch_size, 1, len_k]
return pad_attn_mask.expand(batch_size, len_q, len_k)
# mask掉未来信息
def get_attn_subsequence_mask(seq): # seq: [batch_size, tgt_len]
attn_shape = [seq.size(0), seq.size(1), seq.size(1)]
subsequence_mask = np.triu(np.ones(attn_shape), k=1) # 生成上三角矩阵,[batch_size, tgt_len, tgt_len]
subsequence_mask = torch.from_numpy(subsequence_mask).byte() # [batch_size, tgt_len, tgt_len]
return subsequence_mask
注意力计算函数
# 缩放点积注意力计算
class ScaledDotProductAttention(nn.Module):
def __init__(self):
super(ScaledDotProductAttention, self).__init__()
def forward(self, Q, K, V, attn_mask):
'''
Q: [batch_size, n_heads, len_q, d_k]
K: [batch_size, n_heads, len_k, d_k]
V: [batch_size, n_heads, len_v(=len_k), d_v]
attn_mask: [batch_size, n_heads, seq_len, seq_len]
'''
scores = torch.matmul(Q, K.transpose(-1, -2)) / np.sqrt(d_k) # scores : [batch_size, n_heads, len_q, len_k]
scores.masked_fill_(attn_mask, -1e9) # Fills elements of self tensor with value where mask is True.
attn = nn.Softmax(dim=-1)(scores)
context = torch.matmul(attn, V) # [batch_size, n_heads, len_q, d_v]
return context, attn
#多头注意力计算
class MultiHeadAttention(nn.Module):
def __init__(self):
super(MultiHeadAttention, self).__init__()
self.W_Q = nn.Linear(d_model, d_k * n_heads, bias=False)
self.W_K = nn.Linear(d_model, d_k * n_heads, bias=False)
self.W_V = nn.Linear(d_model, d_v * n_heads, bias=False)
self.fc = nn.Linear(n_heads * d_v, d_model, bias=False)
def forward(self, input_Q, input_K, input_V, attn_mask):
'''
input_Q: [batch_size, len_q, d_model]
input_K: [batch_size, len_k, d_model]
input_V: [batch_size, len_v(=len_k), d_model]
attn_mask: [batch_size, seq_len, seq_len]
'''
residual, batch_size = input_Q, input_Q.size(0)
# (B, S, D) -proj-> (B, S, D_new) -split-> (B, S, H, W) -trans-> (B, H, S, W)
Q = self.W_Q(input_Q).view(batch_size, -1, n_heads, d_k).transpose(1,2) # Q: [batch_size, n_heads, len_q, d_k]
K = self.W_K(input_K).view(batch_size, -1, n_heads, d_k).transpose(1,2) # K: [batch_size, n_heads, len_k, d_k]
V = self.W_V(input_V).view(batch_size, -1, n_heads, d_v).transpose(1,2) # V: [batch_size, n_heads, len_v(=len_k), d_v]
attn_mask = attn_mask.unsqueeze(1).repeat(1, n_heads, 1, 1) # attn_mask : [batch_size, n_heads, seq_len, seq_len]
# context: [batch_size, n_heads, len_q, d_v], attn: [batch_size, n_heads, len_q, len_k]
context, attn = ScaledDotProductAttention()(Q, K, V, attn_mask)
context = context.transpose(1, 2).reshape(batch_size, -1, n_heads * d_v) # context: [batch_size, len_q, n_heads * d_v]
output = self.fc(context) # [batch_size, len_q, d_model]
return nn.LayerNorm(d_model)(output + residual), attn
前馈神经网络
class PoswiseFeedForwardNet(nn.Module):
def __init__(self):
super(PoswiseFeedForwardNet, self).__init__()
self.fc = nn.Sequential(
nn.Linear(d_model, d_ff, bias=False),
nn.ReLU(),
nn.Linear(d_ff, d_model, bias=False))
def forward(self, inputs): # inputs: [batch_size, seq_len, d_model]
residual = inputs
output = self.fc(inputs)
return nn.LayerNorm(d_model)(output + residual) # 残差 + LayerNorm
编码器与解码器
# 编码器层
class EncoderLayer(nn.Module):
def __init__(self):
super(EncoderLayer, self).__init__()
self.enc_self_attn = MultiHeadAttention() # 多头注意力
self.pos_ffn = PoswiseFeedForwardNet() # 前馈网络
def forward(self, enc_inputs, enc_self_attn_mask):
'''
enc_inputs: [batch_size, src_len, d_model]
enc_self_attn_mask: [batch_size, src_len, src_len]
'''
# enc_outputs: [batch_size, src_len, d_model], attn: [batch_size, n_heads, src_len, src_len]
enc_outputs, attn = self.enc_self_attn(enc_inputs, enc_inputs, enc_inputs, enc_self_attn_mask) # enc_inputs to same Q,K,V
enc_outputs = self.pos_ffn(enc_outputs) # enc_outputs: [batch_size, src_len, d_model]
return enc_outputs, attn
# 编码器模块
class Encoder(nn.Module):
def __init__(self):
super(Encoder, self).__init__()
self.src_emb = nn.Embedding(src_vocab_size, d_model)
self.pos_emb = nn.Embedding.from_pretrained(get_sinusoid_encoding_table(src_vocab_size, d_model), freeze=True)
self.layers = nn.ModuleList([EncoderLayer() for _ in range(n_layers)])
def forward(self, enc_inputs):
'''
enc_inputs: [batch_size, src_len]
'''
word_emb = self.src_emb(enc_inputs) # [batch_size, src_len, d_model]
pos_emb = self.pos_emb(enc_inputs) # [batch_size, src_len, d_model]
enc_outputs = word_emb + pos_emb
enc_self_attn_mask = get_attn_pad_mask(enc_inputs, enc_inputs) # [batch_size, src_len, src_len]
enc_self_attns = []
for layer in self.layers:
# enc_outputs: [batch_size, src_len, d_model], enc_self_attn: [batch_size, n_heads, src_len, src_len]
enc_outputs, enc_self_attn = layer(enc_outputs, enc_self_attn_mask)
enc_self_attns.append(enc_self_attn)
return enc_outputs, enc_self_attns
# 解码器层
class DecoderLayer(nn.Module):
def __init__(self):
super(DecoderLayer, self).__init__()
self.dec_self_attn = MultiHeadAttention()
self.dec_enc_attn = MultiHeadAttention()
self.pos_ffn = PoswiseFeedForwardNet()
def forward(self, dec_inputs, enc_outputs, dec_self_attn_mask, dec_enc_attn_mask):
'''
dec_inputs: [batch_size, tgt_len, d_model]
enc_outputs: [batch_size, src_len, d_model]
dec_self_attn_mask: [batch_size, tgt_len, tgt_len]
dec_enc_attn_mask: [batch_size, tgt_len, src_len]
'''
# dec_outputs: [batch_size, tgt_len, d_model], dec_self_attn: [batch_size, n_heads, tgt_len, tgt_len]
dec_outputs, dec_self_attn = self.dec_self_attn(dec_inputs, dec_inputs, dec_inputs, dec_self_attn_mask)
# dec_outputs: [batch_size, tgt_len, d_model], dec_enc_attn: [batch_size, h_heads, tgt_len, src_len]
dec_outputs, dec_enc_attn = self.dec_enc_attn(dec_outputs, enc_outputs, enc_outputs, dec_enc_attn_mask)
dec_outputs = self.pos_ffn(dec_outputs) # [batch_size, tgt_len, d_model]
return dec_outputs, dec_self_attn, dec_enc_attn
# 解码器模块
class Decoder(nn.Module):
def __init__(self):
super(Decoder, self).__init__()
self.tgt_emb = nn.Embedding(tgt_vocab_size, d_model)
self.pos_emb = nn.Embedding.from_pretrained(get_sinusoid_encoding_table(tgt_vocab_size, d_model),freeze=True)
self.layers = nn.ModuleList([DecoderLayer() for _ in range(n_layers)])
def forward(self, dec_inputs, enc_inputs, enc_outputs):
'''
dec_inputs: [batch_size, tgt_len]
enc_intpus: [batch_size, src_len]
enc_outputs: [batsh_size, src_len, d_model]
'''
word_emb = self.tgt_emb(dec_inputs) # [batch_size, tgt_len, d_model]
pos_emb = self.pos_emb(dec_inputs) # [batch_size, tgt_len, d_model]
dec_outputs = word_emb + pos_emb
dec_self_attn_pad_mask = get_attn_pad_mask(dec_inputs, dec_inputs) # [batch_size, tgt_len, tgt_len]
dec_self_attn_subsequent_mask = get_attn_subsequence_mask(dec_inputs) # [batch_size, tgt_len]
dec_self_attn_mask = torch.gt((dec_self_attn_pad_mask + dec_self_attn_subsequent_mask), 0) # [batch_size, tgt_len, tgt_len]
dec_enc_attn_mask = get_attn_pad_mask(dec_inputs, enc_inputs) # [batc_size, tgt_len, src_len]
dec_self_attns, dec_enc_attns = [], []
for layer in self.layers:
# dec_outputs: [batch_size, tgt_len, d_model], dec_self_attn: [batch_size, n_heads, tgt_len, tgt_len], dec_enc_attn: [batch_size, h_heads, tgt_len,src_len]
dec_outputs, dec_self_attn, dec_enc_attn = layer(dec_outputs, enc_outputs, dec_self_attn_mask, dec_enc_attn_mask)
dec_self_attns.append(dec_self_attn)
dec_enc_attns.append(dec_enc_attn)
return dec_outputs, dec_self_attns, dec_enc_attns
transformer模型
class Transformer(nn.Module):
def __init__(self):
super(Transformer, self).__init__()
self.encoder = Encoder()
self.decoder = Decoder()
self.projection = nn.Linear(d_model, tgt_vocab_size, bias=False)
def forward(self, enc_inputs, dec_inputs):
'''
enc_inputs: [batch_size, src_len]
dec_inputs: [batch_size, tgt_len]
'''
# tensor to store decoder outputs
# outputs = torch.zeros(batch_size, tgt_len, tgt_vocab_size).to(self.device)
# enc_outputs: [batch_size, src_len, d_model], enc_self_attns: [n_layers, batch_size, n_heads, src_len, src_len]
enc_outputs, enc_self_attns = self.encoder(enc_inputs)
# dec_outpus: [batch_size, tgt_len, d_model], dec_self_attns: [n_layers, batch_size, n_heads, tgt_len, tgt_len], dec_enc_attn: [n_layers, batch_size, tgt_len, src_len]
dec_outputs, dec_self_attns, dec_enc_attns = self.decoder(dec_inputs, enc_inputs, enc_outputs)
dec_logits = self.projection(dec_outputs) # dec_logits: [batch_size, tgt_len, tgt_vocab_size]
return dec_logits.view(-1, dec_logits.size(-1)), enc_self_attns, dec_self_attns, dec_enc_attns
模型训练
d_model = 512 # 字 Embedding 的维度
d_ff = 2048 # 前向传播隐藏层维度
d_k = d_v = 64 # K(=Q), V的维度
n_layers = 6 # 有多少个encoder和decoder
n_heads = 8 # Multi-Head Attention设置为8
num_epochs = 50 # 训练50轮
# 记录损失变化
loss_history = []
model = Transformer()
criterion = nn.CrossEntropyLoss(ignore_index=0)
optimizer = optim.SGD(model.parameters(), lr=0.001, momentum=0.99)
for epoch in tqdm(range(num_epochs)):
total_loss = 0
for enc_inputs, dec_inputs, dec_outputs in train_loader:
'''
enc_inputs: [batch_size, src_len]
dec_inputs: [batch_size, tgt_len]
dec_outputs: [batch_size, tgt_len]
'''
# enc_inputs, dec_inputs, dec_outputs = enc_inputs.to(device), dec_inputs.to(device), dec_outputs.to(device)
# outputs: [batch_size * tgt_len, tgt_vocab_size]
outputs, enc_self_attns, dec_self_attns, dec_enc_attns = model(enc_inputs, dec_inputs)
loss = criterion(outputs, dec_outputs.view(-1))
optimizer.zero_grad()
loss.backward()
optimizer.step()
total_loss += loss.item()
avg_loss = total_loss/len(train_loader)
loss_history.append(avg_loss)
print('Epoch:', '%d' % (epoch + 1), 'loss =', '{:.6f}'.format(avg_loss))