哈密顿回路问题

一、哈密顿回路问题简介

哈密顿回路问题是图论中的一个经典问题。给定一个无向图 G=(V,E),其中 V 是顶点集,E 是边集,哈密顿回路是指能够访问图中每个顶点一次且仅一次,并最终回到起始顶点的路径。判断一个图是否存在哈密顿回路是一个NP - 完全问题,这意味着目前还没有已知的多项式时间算法来解决它,但我们可以通过一些方法来寻找可能存在的哈密顿回路。

下图是一个哈密顿图

二、算法思路

1、回溯法
       回溯法是解决哈密顿回路问题的常用方法。基本思想是从一个顶点开始,逐步尝试构建一条路径。
       在每一步,我们尝试选择一个未被访问过的相邻顶点加入路径。如果在某个顶点发现无法继续扩展路径(即所有相邻顶点都已经被访问过,但还没有形成哈密顿回路),则回溯到上一个顶点,尝试其他的选择。

2、数据结构

       图的表示:我们可以使用邻接矩阵来表示图。对于一个有 n 个顶点的图,定义一个二维数组  graph[n][n] ,如果顶点 i 和顶点 j 之间有边相连,则  graph[i][j] = 1 ,否则  graph[i][j]=0 。
       路径记录:使用一个一维数组  path[n]  来记录当前找到的路径, path[i]  表示路径中的第 i + 1 个顶点。下图为图的表示示例。

3、关键代码展示

三、全部代码及其解析(用c语言展示)

#include <stdio.h>//预处理指令,用于引入标准输入输出库的头文件 
#include <stdbool.h>//此指令引入了布尔类型(bool)及其相关操作的定义,方便使用true和false 

#define V 5 // 顶点数,是一个宏定义,它定义了一个符号常量V,只要一出现,就会被替换为5 

void printSolution(int path[]);

bool isSafe(int v, bool graph[V][V], int path[], int pos) {
    // 检查顶点 v 是否与路径中的前一个顶点相连
    if (graph[path[pos-1]][v] == 0)
        return false;//如果顶点V与路径中前一个顶点不相连,返回false,表示不安全 

    // 检查顶点 v 是否已经在路径中
    for (int i = 0; i < pos; i++)
        if (path[i] == v)
            return false;//如果顶点v已经在路径中,返回false,表示不安全 

    return true;//如果上述两个条件都不满足,即顶点v与前一个顶点相连且不在当前路径中,返回true,表示安全 
}

//函数hamCycleUtil用于判断是否存在哈密顿回路 
bool hamCycleUtil(bool graph[V][V], int path[], int pos) {
    // 基本情况: 如果所有顶点都包含在路径中,检查最后一个顶点是否连接到第一个顶点
    if (pos == V) { //pos表示当前路径中顶点的数量。当pos等于v时,意味着已经尝试添加v个顶点到路径中。 
        if (graph[path[pos-1]][path[0]] == 1)//path[pos-1]表示路径中的最后一个顶点,path[0]表示路径中的第一个顶点 
           return true;//graph[path[pos-1]][path[0]]用于获取表示这两个顶点之间是否有边的布尔值。 
        else  			//如果这个值为1,说明最后一个顶点与第一个顶点有连接,函数返回true,表示找到了哈密顿回路 
           return false;
    }

    // 尝试不同的顶点作为下一个顶点
    for (int v = 1; v < V; v++) {
        if (isSafe(v, graph, path, pos)) {//调用isSafe(v,graph,path,pos)函数来检查当前顶点v是否安全地添加到路径中 
            path[pos] = v;//如果可以添加(即isSafe函数返回true),将顶点v赋值给path[pos],即将当前顶点放在pos的位置 

            // 递归地检查路径是否可以扩展到哈密顿回路
            if (hamCycleUtil(graph, path, pos+1) == true)//通过递归调用hamCycleUtil(graph, path, pos+1)来检查添加这个顶点后路径是否能扩展成为哈密顿回路 
                return true;// 如果可以扩展成功(即递归调用返回true),直接返回true表示找到了哈密顿回路 

            // 如果添加顶点 v 不成功,则移除它
            path[pos] = -1;//如果添加这个顶点不成功,将path[pos]重新设置为-1,表示移除这个不成功添加的顶点,然后继续循环尝试下一个顶点 
        }
    }

    // 如果没有顶点可以添加,则返回 false
    return false;
}

bool hamCycle(bool graph[V][V]) {
    int path[V];//声明了一个整数数组path[v] 
    for (int i = 0; i < V; i++)//通过循环将path数组中的元素初始化为-1 
        path[i] = -1;

    // 从顶点 0 开始
    path[0] = 0;

    if (hamCycleUtil(graph, path, 1) == false) {//调用hamCycleUtil函数,并根据其返回值进行判断
	//如果返回false,则输出“没有哈密顿回路存在”并返回false。如果返回true,则调用printSolution函数。 
        printf("没有哈密顿回路存在");
        return false;
    }

    printSolution(path);
    return true;
}

void printSolution(int path[]) {//定义一个名为printSolution的函数,用于打印哈密顿回路 
    printf("哈密顿回路存在: ");//提示接下来要打印的是哈密顿回路 
    for (int i = 0; i < V; i++)//
        printf(" %d ", path[i]);//在每次循环中,打印出path数组中索引为i的元素,并在元素前添加一个空格 
    printf(" %d ", path[0]); // 打印出path数组的第一个元素,也就是回路的起点,以表示回到起点 
    printf("\n");//换行符 
}

int main() {
    /* 示例图
       (0)--(1)--(2)
        |   / \   |
        |  /   \  |
       (3)-------(4)    */
    bool graph1[V][V] = {
        {0, 1, 0, 1, 0},
        {1, 0, 1, 1, 1},
        {0, 1, 0, 0, 1},
        {1, 1, 0, 0, 1},
        {0, 1, 1, 1, 0},
    };

    hamCycle(graph1);

    return 0;
}

issafe函数:

  • 检查顶点 v 是否与路径中的前一个顶点相连,如果顶点V与路径中前一个顶点不相连,返回false,表示不安全 。
  • 检查顶点 v 是否已经在路径中,如果顶点v已经在路径中,返回false,表示不安全。
  • 如果上述两个条件都不满足,即顶点v与前一个顶点相连且不在当前路径中,返回true,表示安全 。

hamCycleUtil函数:

  • 用于判断是否存在哈密顿回路 如果所有顶点都包含在路径中,检查最后一个顶点是否连接到第一个顶点。pos表示当前路径中顶点的数量。当pos等于v时,意味着已经尝试添加v个顶点到路径中。path[pos-1]表示路径中的最后一个顶点,path[0]表示路径中的第一个顶点 。graph[path[pos-1]][path[0]]用于获取表示这两个顶点之间是否有边的布尔值。如果这个值为1,说明最后一个顶点与第一个顶点有连接,函数返回true,表示找到了哈密顿回路。
  • 然后对于每个未被访问且与当前顶点有边相连的顶点,将其标记为已访问,加入路径,并递归地调用自身来尝试构建后续路径。如果递归调用返回 false ,则进行回溯,将顶点标记为未访问。

hamCycle函数

  •  初始化路径数组和访问标记数组,从顶点0开始寻找哈密顿回路,调用 hamiltonianCycleUtil  函数进行实际的寻找操作。

main函数

  •  定义了一个示例图,并调用 hamCycle  函数来判断该图是否存在哈密顿回路,并输出相应结果。

四、复杂度分析

1. 时间复杂度
    在最坏情况下,算法需要尝试所有可能的顶点排列,时间复杂度为 O(n!),其中 n 是顶点数。因为对于每个顶点,都可能有 n - 1 种选择作为下一个顶点,以此类推。
2. 空间复杂度
    空间复杂度主要由递归调用栈和路径数占用,所以空间复杂度为 O(n),其中 n 是顶点数。

五、优化可能性

虽然哈密顿回路问题是NP-完全问题,但在某些情况下,可以通过以下方法进行优化:

  • 剪枝: 在递归过程中,如果当前路径无法扩展到完整回路,可以提前剪枝,减少不必要的计算。
  • 启发式方法: 使用启发式算法(如贪心策略)来选择下一个顶点,可能会在某些特定类型的图上提高效率。
  • 动态规划: 对于某些特定问题,可以使用动态规划来减少重复计算,但总体时间复杂度仍然是指数级的。

然而,由于问题的本质复杂性,这些优化只能在特定情况下提供有限的效率提升,无法改变指数级时间复杂度的本质。

六、总结

哈密顿回路问题是一个具有挑战性的图论问题。通过C语言和回溯算法,我们可以尝试寻找图中的哈密顿回路。虽然在最坏情况下算法的时间复杂度较高,但对于小规模的图还是能够有效地找到解。在实际应用中,可以根据问题的规模和特性,考虑是否采用近似算法或启发式算法来更高效地处理哈密顿回路相关问题。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值