感兴趣的同学可以CSDN查看个人简介,获取相关数据集噢。
【赛题背景】2024数字中国创新大赛—数据要素赛道。2023年12月1日,我国首个国家级海上风电研究与试验检测基地在福建开工建设,海上风电是实现能源低碳转型的重要战略支撑,大规模海上风力发电已成为国家能源战略发展的重要方向。
【应用领域】AI+海上风电出力预测
【数据任务】基于风力海况气象数据、风机性能数据等,针对复杂多变气象和海况条件的深度耦合影响,建立海上风电出力预测模型,提升模型精度以及在工程应用中的可信度,为大规模风电接入的能源安全可靠运行提供保障。
【文件目录】包含以下所示的数据文件:
A_submit_example.csv
A榜-测试集_海上风电预测_基本信息.csv
A榜-测试集_海上风电预测_气象变量数据.csv
A榜-训练集_海上风电预测_基本信息.csv
A榜-训练集_海上风电预测_气象变量及实际功率数据.csv
海上风电出力预测_lgb_baseline.py
【数据描述】海上风电出力预测的用电数据分为训练组和测试组两大类,主要包括风电场基本信息、气象变量数据和实际功率数据三个部分。风电场基本信息主要是各风电场的装机容量等信息;气象变量数据是从2022年1月到2024年1月份,各风电场每间隔15分钟的气象数据;实际功率数据是各风电场每间隔15分钟的发电出力数据。数据集文件的格式为csv格式。A榜包括2个训练集和2个测试集数据。
1. 基本信息:存储的是五个风电场的位置和装机容量等信息,包括:
2. 气象变量数据:存储的是五个风电场从2022年1月到2024年1月份,每间隔15分钟的气象数据,包括:
3. 实际功率数据:存储的是5个各风电场从2022年1月到2024年1月份,每间隔15分钟的发电出力数据,包括:
【预测结果说明】
提交文件格式为csv文件,编码采用utf-8,文件名为xxx.csv。格式与训练文件相同,需补充每条数据query_set字段中的label字段值。采用均方根误差(Root Mean Square Error,简称RMSE)对模型预测精度进行评价。