海上风力发电预测

摘要:随着全球对可再生能源需求的不断增长,海上风力发电作为一种清洁、可再生的能源形式,其预测技术的准确性对于电力系统的稳定运行和能源的有效利用至关重要。为了最大化其经济效益和环境效益,准确的海上风力发电预测成为风电场建设和运营决策的核心环节,对提高风电利用效率和促进电力系统平衡发展的重要行具有巨大重要性。本文探讨了利用长短期记忆网络(LSTM)、循环神经网络(RNN)、门控循环单元(GRU)、卷积神经网络(CNN)以及多层感知机(MLP)等多种深度学习模型进行海上风力发电预测的方法。我们详细描述了LSTM、RNN、GRU、CNN和MLP五种深度学习模型的基本原理和结构特点,并分析了它们在处理时间序列和捕捉空间特征方面的特点。为了验证这些模型在海上风力发电预测中的性能,我们基于大量历史风力发电数据进行数据预处理,分别使用五种模型对风力发电进行预测,并通过实验对比了它们的预测精度和效率。最后,我们根据实验结果和模型特点,对海上风力发电预测技术的发展趋势进行了展望,为海上风力发电的可持续发展提供有力支持。

一、业务分析

风能作为一种清洁的可再生能源,越来越受到重视。在风力发电的迅速发展中,海上发电场比陆上发电场更具有发展的潜力和优势。与陆上风电场相比,海上风电场由于所处的地理位置的优势,而带来的成本下降和单机输出功率的增长将进一步体现出来。因此,海上风力发电已成为风能利用的必然趋势。通过对海上风电场发电量进行短期和中期的准确预测,可以大幅降低电网旋转备用容量,从而有效降低风力发电系统成本,并且为电网运行调度提供可靠的依靠。人工智能技术的迅速发展给电力行业带来了巨大变革,机器学习技术也已在风力发电预测领域得到了广泛使用。目前,存在许多算法运用于该领域,我们选取不同的算法进行实验。

海上风力发电预测业务分析涉及对海上风力资源进行评估和预测,以指导风电场的建设、运营和管理。这项业务的分析涵盖了多个方面:

市场需求分析:首先需要分析市场对海上风力发电预测的需求,包括未来几年海上风电的发展趋势、新建项目的规模和数量,以及相关政策、法规对预测精度和时效性的要求。

资源评估和数据收集:对海上风力资源进行评估是预测的基础。这涉及到收集大量的气象数据、海洋数据、地形数据等,以及建立相应的数据库和模型来分析这些数据,评估海上风力资源的空间和时间分布特征。

预测方法选择: 针对海上风力发电预测,需要选择适合的预测方法。常见的方法包括统计模型、数值模拟、机器学习等。针对不同的需求和场景,可能需要结合多种方法,以提高预测的准确性和可靠性。

模型建立和验证: 建立预测模型是业务分析的关键步骤。这包括选择合适的模型结构、参数调优、模型验证等过程。模型的准确性和可靠性对于预测结果的有效性至关重要。

预测结果输出和应用: 预测结果需要以直观、易懂的形式输出,以便决策者、工程师和运营人员能够及时有效地利用。预测结果的应用包括风电场的布局优化、风机参数的设计和优化、运营计划的制定等。

综上所述,海上风力发电预测业务分析涉及多个方面,从市场需求分析到预测方法选择、模型建立和验证,再到预测结果输出和应用,都需要综合考虑各种因素,以确保预测结果的准确性和可靠性,从而为海上风力发电行业的发展提供有效支持。

二、理论基础

海上风电是热门的工程,准确预测很重要,因此必须深入了解该方向相关知识的理论基础。首先就是要了解风力发电的影响因子,以便于后续准确应用数据集预测,使实验具有应用意义。海上风力发电预测使用RNNMLPLSTMGRUCNN等神经网络模型,以下介绍相关模型的理论知识,以便于后续的模型构建和分析。

2.1 RNN

循环神经网络(Recurrent Neural Network,简称RNN)是一种专为序列数据设计的神经网络架构。不同于传统的前馈神经网络,RNN具有反馈连接,允许信息在时间维度上循环流动,从而具备记忆功能。这一特性使RNN能够捕捉输入数据中的时间依赖性和序列模式,非常适合处理诸如自然语言、音频信号和时间序列预测等问题。RNN通过在每个时间步骤更新隐藏状态,来整合过去的输入信息,使得网络可以处理可变长度的序列。然而,RNN在训练长序列时面临梯度消失或爆炸的问题,这促使了长短期记忆网络(LSTM)和门控循环单元(GRU)等改进模型的发展。

2.2 MLP

多层感知机(Multilayer Perceptron,简称MLP)是一种广泛使用的人工神经网络模型,属于前馈神经网络的一种。它由至少三层节点组成:输入层、一个或多个隐藏层以及输出层。每一层的节点与下一层的节点完全连接,但层内节点之间没有连接。MLP中的节点使用激活函数来引入非线性,使得网络能够学习和表示复杂的函数映射。训练过程中,利用反向传播算法调整网络权重,以最小化预测结果与实际结果之间的差异。这种类型的网络适用于多种任务,包括分类和回归,在图像识别、语音处理和自然语言处理等领域有广泛应用。

2.3 LSTM

长短期记忆网络(Long Short-Term Memory,简称LSTM)是一种特殊类型的循环神经网络(RNN),设计用于克服传统RNN在处理长序列数据时的梯度消失和梯度爆炸问题。LSTM通过引入“门控机制”(包括输入门、遗忘门和输出门)和细胞状态,能够选择性地记住或遗忘信息,从而有效管理长期依赖关系。这些门控使用Sigmoid激活函数控制信息流,而细胞状态则通过Tanh激活函数存储信息。LSTM单元允许信息在序列中稳定传播,使其非常适合于处理如语音识别、机器翻译和时间序列预测等任务。

2.4 GRU

门控循环单元(Gated Recurrent Unit,简称GRU)是一种简化版的长短期记忆(LSTM)网络,用于处理序列数据并捕捉长期依赖。GRU结合了LSTM的优点,但结构更为简洁,只包含两个门控机制:更新门和重置门。更新门决定新状态如何基于旧状态和候选状态进行更新,而重置门控制旧状态对候选状态的影响程度。这样的设计减少了参数数量,加快了训练速度,同时保持了对长期信息的有效记忆。GRU广泛应用于自然语言处理、语音识别和时间序列分析等场景,提供了一种高效且性能优越的循环神经网络解决方案。

2.5 CNN

卷积神经网络(Convolutional Neural Network,简称CNN)是一种深度学习模型,特别设计用于处理具有网格结构的数据,如图像。CNN利用卷积层来自动检测输入数据中的局部特征,通过滑动小窗口(即卷积核)跨整个输入空间进行操作。这种架构支持权重共享和局部感知,使得网络能够识别对象而不受位置影响。池化层则有助于减少数据维度,增强模型对平移的鲁棒性。

三、模型设计

3.1数据准备 

3.1.1数据采集

本文采用的海上风电数据来源是“内陆和海上风电场多变量环境因素功率曲线估计”数据集。

在进行海上风力发电预测时,所需的数据一般考虑会包括气象数据、地理位置数据、风电场设备数据以及历史发电数据等。考虑数据的维数带来的极大复杂性,在本实验主要考虑气象数据包括:风速:风力发电最直接相关的因素,通常需要不同高度的风速数据。风向:影响风力涡轮机的朝向和效率。气温:影响空气密度,间接影响风力发电机的性能。湿度:影响空气密度,且可能影响设备的运行状态。气压:同样影响空气密度,对发电效率有间接影响。对应这方面要求,查阅网上公开数据集,部分展示如图所示:

3.1.2数据预处理

(1) 数据标准化:

由于风速、风向、气温、湿度和气压等特征存在不同的量纲,并且数值差异较大。为了消除特征之间的量纲和取值范围差异可能会造成的影响,采用MinMaxScaler()函数进行特征归一化处理。

(2)时间序列处理

如果使用时间序列模型,需要将数据转换为滑动窗口序列,以便模型可以学习时间依赖性。本实验可以构建一个用于处理序列数据并将其分割成训练集和测试集,适用于时间序列预测问题。函数接收一个序列和一个窗口大小作为输入,将原始序列转换成监督学习问题的输入输出对。它会从序列中提取连续的子序列作为输入特征并取紧跟在子序列后面的下一个值作为目标输出。函数最终返回的是两个数组,分别代表所有输入特征序列和对应的目标输出值

(3)分割数据集

预测工作需要先将海上风力发电数据分为训练集、验证集和测试集,用于模型训练、超参数调整和最终评估。因此需要创建数据集分割函数用于将完整的数据集分割成训练集和测试集,并应用上一步骤应用到的时间序列处理函数来构建序列数据。它首先定义训练集和测试集的分割点。训练集是数据集的前训练尺寸个元素,而测试集则是从 训练尺寸- 窗口大小开始到数据集的末尾。这样做的原因是测试集也需要有完整的窗口大小来形成有效的输入序列。接着,分别对训练集和测试集调用时间序列处理函数,产生各自的输入特征和目标输出。

综上所述,通过上述步骤,可以确保数据的质量和适用性,从而提高预测模型的准确性和可靠性。

3.2函数准备 

3.2.1 随机数种子函数

随机数种子函数是用于初始化随机数生成器的函数。在编程中,如果不设置随机数种子,那么每次运行程序时,产生的“随机”数序列将是一样的。这是因为计算机的“随机”数实际上是由一个确定性的算法生成的,这种数被称为伪随机数。通过设置随机数种子,可以改变这个确定性的算法的起始点,从而产生不同的随机数序列。一般会使用当前的时间或者用户输入作为随机数种子,以确保每次运行程序时都能得到不同的随机数序列。这对于机器学习实验尤其重要,因为很多算法包含随机初始化的过程,设置相同的种子可以保证每次运行实验时得到相同的结果,便于调试和复现实验结果。在本实验中首先设置Python的哈希随机化种子为0,这影响了Python字典的排序,从而影响了某些基于哈希的随机行为。设置NumPy的随机数生成器种子为1设置rnPython内置的random模块,设置其种子为12345。设置TensorFlow的随机数生成器种子为123

3.2.2设置评估函数

评估函数的设计对于算法的效率和效果至关重要。一个好的评估函数应该能够准确地反映状态的真实价值,并且计算起来要足够快。在机器学习中,评估函数也称为损失函数(Loss Function)或目标函数(Objective Function)。损失函数用于量化模型预测与真实值之间的差异,优化算法的目标就是最小化这个差异。设计评估函数时,需要根据具体的问题和目标来调整其参数和权重,使其能更好地服务于特定的应用场景

本次预测中设置评估函数来分别计算了平均绝对误差表示预测值与真实值之间平均绝对差值的大小),均方误差表示预测值与真实值之间差值的平方的平均值,更强调较大的误差),均方根误差MSE的平方根,与MSE相比,单位与原始数据一致,更直观),R²分数,或决定系数(衡量的是模型预测值与真实值之间的相关性,取值范围在[0, 1],值越接近1表示模型拟合效果越好)等,最后,函数返回这些指标,供后续分析使用。

3.2.3 损失图与拟合图可视化函数

首先定义一个plot_loss函数,此函数接收训练历史记录hist和可选的图像文件名imfname作为参数。它遍历历史记录中的所有度量,为每一种度量绘制训练过程中的变化曲线。每个子图都展示了训练过程中特定度量的变化趋势,帮助分析模型的训练效果。

而后定义plot_fit函数,这个函数接收测试数据的实际值y_test和模型预测值y_pred。它绘制两条线:一条红色的线代表实际值,一条蓝色的线代表模型预测值。通过比较这两条线,可以直观地评估模型预测的准确性和拟合程度。

3.3模型构建流程

使用build_model函数构建不同的模型。其中RNN由两个 SimpleRNN 层构建简单的循环神经网络;MLP由一个全连接层(Dense)和一个展平层(Flatten),并且使用ReLU激活函数;LSTM由两个 LSTM 层构建长短期记忆网络;GRU由两个 GRU 层构建门控循环单元网络;CNN由构建一维卷积神经网络,包含两个 Conv1D 层,最后通过 Flatten 层展平。在调用不同的模型用于预测海上风电时,可调整颖隐藏层的维度,不同的维度会导致不同的预测误差,从而使预测功率更符合期望功率。在模型训练时,设置了EarlyStopping回调函数,以在损失不再减小时,其中训练过程中的损失记录在hist中。使用模型对测试数据进行预测。将预测结果和测试数据的目标变量反归一化到原始尺度。

对于每种模型类型,build_model 函数首先根据 X_train 的形状确定输入层的尺寸。然后,根据 mode 参数选择不同的模型架构,并添加相应的层。最后,模型通过 Adam 优化器进行编译,并使用均方误差(MSE)作为损失函数,同时计算根均方误差(RMSE)、平均绝对百分比误差(MAPE)和平均绝对误差(MAE)作为评价指标。最后,对不同的模型的结果进行可视化展示和评估。

总结:train_fuc 函数提供了完整的模型训练、预测和评估流程,包括数据预处理、模型训练、结果可视化和评估指标计算。它能够适应多种模型类型,通过调整参数可以灵活地控制训练细节,适用于时间序列预测等场景的模型训练和效果分析。同时,通过收集和存储评估指标和预测结果,便于后续的模型比较和选择。

3.4预测结果

  1. 使用LSTM预测海上风力发电

使用LSTM依据历史海上风力发电数据预测未来发电功率,得到下述各个误差随着周期的变化,由图可知,各种误差随着周期逐渐下降,在前几个周期快速下降以达到收敛。最后依据测试数据测试LSTM性能可发现预测值和真实值相差较小,说明LSTM可用于海上风力发电功率预测。

(2)使用RNN预测海上风力发电

使用RNN依据历史海上风力发电数据预测未来发电功率,得到下述各个误差随着周期的变化,由图可知,各种误差随着周期逐渐下降,在前几个周期快速下降以达到收敛。最后依据测试数据测试RNN性能可发现预测值和真实值相差较小,对比于LSTM,预测值和真实值拟合差距略大。

(3)使用GRU预测海上风力发电

使用GRU依据历史海上风力发电数据预测未来发电功率,得到下述各个误差随着周期的变化,由图可知,各种误差随着周期逐渐下降,在前几个周期快速下降以达到收敛。在使用测试数据验证GRU性能时发现在40~90时间内,预测值和真实值相差较大,说明GRU在该时间段预测存在问题。

(4)使用CNN预测海上风力发电

使用CNN依据历史海上风力发电数据预测未来发电功率,得到下述各个误差随着周期的变化,由图可知,各种误差随着周期逐渐下降,在前几个周期快速下降以达到收敛。在使用测试数据验证时,结果显示预测值和真实值误差较大,相对于其他模型,说明该模型不适于海上风力发电功率预测。

(5)使用MLP预测海上风力发电

使用MLP依据历史海上风力发电数据预测未来发电功率,得到下述各个误差随着周期的变化,由图可知,各种误差随着周期逐渐下降,在前几个周期快速下降以达到收敛。在前20个周期中,MAPE误差随着周期曲折变化。在使用测试数据验证时,结果显示预测值和真实值误差较大,相对于其他模型,说明该模型的结构设计不适用于该领域预测,可在后续调整。

(6) 实验总结

3.5实验小结

通过实验结果对比,我们可以看到其中LSTM的衡量模型拟合优度的指标(R2)最接近1,均绝对误差(MAE)和均方根误差(RMSE)值最小,GRU的平均绝对百分误差(MAPE)最小,MLP的运行时间最短。

从实验结果可以看到所有深度学习模型的预测效果都还不错,GRU等循环神经网络效果很好,其中LSTM调了一下参数,并且效果是最好的,这为之后的海上风力发电预测提供了一些参考。

四、总结与展望

4.1总结

本文基于海上发电预测简单使用一些常见的神经网络进行预测效果对比,通过长短期记忆网络(LSTM)、循环神经网络(RNN)、门控循环单元(GRU)、卷积神经网络(CNN)以及多层感知机(MLP)等多种深度学习模型进行了海上风力发电预测,并通过实验对比了它们的预测精度和效率,并且预测效果都很不错。可以看到模型的预测效果都还不错,GRU等循环神经网络效果很好,其中LSTM调了一下参数,并且效果是最好的。

准确的海上风力发电预测能够帮助优化风电场的布局和设计。通过预测海上风资源的分布和变化趋势,可以选择最佳的风电场位置,提高风机的布置密度和利用率,从而最大程度地发挥风力资源的利用效率。预测的准确性直接影响到风力发电的效率和经济性。准确的预测能够帮助制定更合理的运营计划,减少停机时间和资源浪费,降低发电成本,提高风电项目的经济效益。海上风力发电作为可再生能源的重要组成部分,对于电网的稳定运行具有重要意义。准确的预测能够提前预知风力发电量的波动和变化,为电网调度和平衡提供重要参考,确保电力系统的稳定运行。海上风力发电是清洁、可再生的能源形式,对于减少温室气体排放、保护环境具有重要意义。准确的预测有助于提高风电的利用效率,降低对传统能源的依赖,推动能源结构的转型升级,促进可持续发展。

综上所述,海上风力发电预测对于提高发电效率、保障电网稳定、及推动环境保护和可持续发展具有重要意义,是海上风力发电行业发展的关键技术之一。

通过本文的多个深度学习模型的预测,为海上风力发电预测提供了重要参考,未来的海上风电功率预测除了满足现有的电网调度需求、减少旋转备用、合理安排检修计划之外,也很有可能成为电力期货交易市场的重要支撑。在这种情况下,高精度的功率预测必将发挥更重要的价值。

4.2展望 

随着海上风力发电行业的发展和技术进步,数据量的增加和数据质量的提高将成为发展的基础。未来的发展趋势将更加注重利用大数据、人工智能和机器学习等技术,构建数据驱动的预测模型,提高预测的准确性和精度。

未来的海上风力发电预测系统可能会采用多种不同的预测模型,并将它们集成到一个统一的预测系统中。通过融合不同模型的优势,可以提高预测的稳定性和可靠性,适应不同场景和需求。

未来的海上风力发电预测系统可能会趋向智能化和自适应性。通过引入自学习算法和自适应优化方法,预测系统能够根据实时数据和历史经验不断优化模型参数,提高预测的适应性和鲁棒性。

综上所述,未来海上风力发电预测技术的发展将更加注重数据驱动、多模型融合、和智能自适应等方面,以提高预测的准确性、稳定性和实用性,促进海上风力发电行业的持续健康发展。

  • 14
    点赞
  • 14
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

@HHY#

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值