【纯自用】roboflow的使用

主页的侧边栏

没写就是不懂

分组管理

上传图片&数据标注

等待标注页面 魔法也有延时x2 魔法厉害当我没说

就这样进行标注 这都看不懂你重开吧 

标注完你左上角点击后退箭头忘记标出来了 

不想自个儿找图片做数据模型

使用别人的数据集 侧边栏的小星球

等待加载是漫长的 魔法也有延时

纯等待

加载出来后点击侧边栏的图库可以全选

如何将universe的图片全部加入到自己的classes中并命名正确

已经有了一个工作区 并且里按照以下方式有另一种内容的图片(你现在想做的是添加另一种内容的图片放入同一个工作区【图库】)

就这样水灵灵的等待

这样回到工作区你就会发现setting页面的class有了名字

在此基础上你要再添加一种鸟的图片

克隆之后在下面选择工作区 记得选进你上面那个已经建立好的工作区

然后来到setting 

如果发现class是0则如下图 进入改名

### Roboflow Universe 功能介绍 Roboflow Universe 是一个面向计算机视觉开发者的公共资源库,旨在帮助开发者快速找到并使用预训练模型、数据集以及其他工具来加速项目开发进程[^3]。以下是关于 Roboflow Universe 的主要功能及其用途: #### 数据集资源 Universe 提供了大量的公开标注数据集,这些数据集涵盖了多种领域和应用场景,例如物体检测、图像分割以及分类任务等。通过访问 Universe 中的数据集,用户可以减少自行收集和标记数据的时间成本[^4]。 #### 预训练模型 除了数据集外,Roboflow Universe 还包含了多个经过优化的预训练模型。对于希望立即测试算法效果或者微调现有模型以适配特定需求的团队来说非常有用。比如 YOLOv8 在性能上的改进已经被证明能够提供更好的整体平均精度 (mAP),同时减少了异常情况的发生率[^1]。 #### 社区贡献与案例分享 正如 Nelson 所提到,“SAM 改变了我们构建高质量模型的速度”,这同样适用于整个 Roboflow 平台及其中的 Universe 版块——它不仅促进了技术进步还加强了社区间的交流互动[^2]。在这里你可以看到其他成员如何运用 SAM 或者类似的先进技术解决实际问题,并从中获得灵感应用于自己的工作中去。 #### 如何开始使用? 要探索 Roboflow Universe 及其提供的所有优势很简单: - 访问官网注册账号后登录即可浏览可用的内容; - 根据具体兴趣筛选合适类别下的资料下载链接或在线查看说明文档; - 如果打算采用某个特定框架如 TensorFlow/PyTorch,则注意确认版本兼容性和安装指导等相关细节信息。 ```python import roboflow rf = roboflow.Roboflow(api_key="YOUR_API_KEY") project = rf.workspace().project("example-project-name") dataset = project.version(1).download("coco") ``` 上述代码片段展示了如何利用 Python SDK 来加载来自 Roboflow Universe 上的一个 COCO 格式的样本数据集合到本地环境当中用于进一步分析处理。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值