目标
在本教程中,您将学习如何:
-
应用两个非常常见的形态算子(即膨胀和侵蚀),并创建自定义核,以便在水平轴和垂直轴上提取直线。为此,您将使用以下 OpenCV 函数:
在一个示例中,您的目标是从乐谱中提取音符。
理论
形态学操作
形态学是一组图像处理操作,它们基于预定义的结构元素(也称为内核)处理图像。输出图像中每个像素的值基于输入图像中相应像素与其相邻像素的比较。通过选择内核的大小和形状,您可以构建对输入图像的特定形状敏感的形态操作。
两个最基本的形态学操作是扩张和侵蚀。膨胀将像素添加到图像中物体的边界上,而侵蚀则恰恰相反。添加或删除的像素量分别取决于用于处理图像的结构元素的大小和形状。通常,这两个操作遵循的规则如下:
-
膨胀:输出像素的值是结构元素大小和形状内所有像素**的最大值。**例如,在二进制图像中,如果输入图像中属于内核范围的任何像素设置为值 1,则输出图像的相应像素也将设置为 1。后者适用于任何类型的图像(例如灰度、bgr 等)。
二值图像上的膨胀
灰度图像上的膨胀
-
侵蚀:反之亦然。输出像素的值是结构元素大小和形状范围内所有像素的***最小***值。请看下面的示例图:
二进制图像上的侵蚀
灰度图像上的侵蚀
结构元素
如上所述,一般来说,在任何形态学操作中,用于探测输入图像的结构元素是最重要的部分。
结构元素是一个仅由 0 和 1 组成的矩阵,可以具有任意形状和大小。通常比正在处理的图像小得多,而值为 1 的像素定义邻域。结构元素的中心像素(称为原点)标识感兴趣的像素 - 正在处理的像素。
例如,下面演示了 7x7 大小的菱形结构元素。
菱形结构元素及其起源
结构元素可以具有许多常见的形状,例如线条、菱形、圆盘、周期线以及圆形和大小。通常,您选择与要在输入图像中处理/提取的对象具有相同大小和形状的结构元素。例如,要查找图像中的线条,请创建一个线性结构元素,稍后将看到。
法典 C++爪哇岛蟒
本教程代码如下所示。
您也可以从这里下载。
#include < opencv2/core.hpp>
#include < opencv2/imgproc.hpp>
#include < opencv2/highgui.hpp>
#include < iostream>
void show_wait_destroy(const char* winname, cv::Mat img);
使用命名空间 std;
使用命名空间 CV;
int main(int argc, char** argv)
{
CommandLineParser 解析器(argc, argv, “{@input |笔记:.png |输入图像}”);
Mat src = imread( samples::findFile( parser.get<String>(“@input”) ), IMREAD_COLOR);
如果 (src.空())
{
cout << “无法打开或找到图像!”<<结束;
cout << “Usage: ” << argv[0] << “ ” << endl;
返回 -1;
}
显示源图像
imshow(“src”, src);
将源图像转换为灰色(如果尚未转换为灰色)
垫灰色;
如果 (src.频道() == 3)
{
cvtColor(src, 灰色, COLOR_BGR2GRAY);
}
还
{
灰色 = src;
}
显示灰色图像
show_wait_destroy(“灰色”,灰色);
在灰色bitwise_not应用 adaptiveThreshold,注意 ~ 符号
垫子bw;
adaptiveThreshold(~gray, bw, 255, ADAPTIVE_THRESH_MEAN_C, THRESH_BINARY, 15, -2);
显示二进制图像
show_wait_destroy(“二进制”,bw);
创建将用于提取水平线和垂直线的图像
在水平轴上指定大小
int horizontal_size = 水平。科尔斯 / 30;
创建用于通过形态操作提取水平线的结构元素
垫子 horizontalStructure = getStructuringElement(MORPH_RECT, Size(horizontal_size, 1));
应用形态学操作
显示提取的水平线
show_wait_destroy(“水平”,水平);
指定垂直轴上的大小
int vertical_size = 垂直。行数 / 30;
创建结构元素,用于通过形态操作提取垂直线
垫垂直结构 = getStructuringElement(MORPH_RECT, Size(1, vertical_size));
应用形态学操作
扩张(vertical, vertical, verticalStructure, Point(-1, -1));
显示提取的垂直线
show_wait_destroy(“垂直”,垂直);
反向垂直图像
bitwise_not(垂直、垂直);
show_wait_destroy(“vertical_bit”,垂直);
根据逻辑提取边缘和平滑图像
1.提取边
2.扩张(边缘)
3.src.copyTo(平滑)
4.模糊平滑 IMG
5.smooth.copyTo(src, edges)
第 1 步
垫子边缘;
adaptiveThreshold(垂直, 边缘, 255, ADAPTIVE_THRESH_MEAN_C, THRESH_BINARY, 3, -2);
show_wait_destroy(“边缘”,边缘);
步骤 2
Mat 内核 = Mat::ones(2, 2, CV_8UC1);
扩张(边缘、边缘、内核);
show_wait_destroy(“扩张”,边缘);
步骤 3
垫子光滑;
垂直。copyTo(平滑);
步骤 4
步骤 5
光滑。copyTo(垂直,边缘);
显示最终结果
show_wait_destroy(“平滑 - 最终”,垂直);
返回 0;
}
void show_wait_destroy(const char* winname, cv::Mat img) {
imshow(winname, img);
moveWindow(winname, 500, 0);
waitKey(0);
destroyWindow(winname);
}
解释/结果 C++爪哇岛蟒
从这里获取图像。
加载图像
CommandLineParser 解析器(argc, argv, “{@input |笔记:.png |输入图像}”);
Mat src = imread( samples::findFile( parser.get<String>(“@input”) ), IMREAD_COLOR);
如果 (src.empty())
{
cout << “无法打开或找到图像!”<<结束;
cout << “Usage: ” << argv[0] << “ ” << endl;
返回 -1;
}
显示源图像
imshow(“src”, src);
灰度
将源图像转换为灰色(如果尚未转换为灰色)
垫灰色;
如果 (src.channels() == 3)
{
cvtColor(src, 灰色, COLOR_BGR2GRAY);
}
还
{
灰色 = src;
}
显示灰色图像
show_wait_destroy(“灰色”,灰色);
灰度到二进制图像
在灰色bitwise_not应用 adaptiveThreshold,注意 ~ 符号
垫子bw;
adaptiveThreshold(~gray, bw, 255, ADAPTIVE_THRESH_MEAN_C, THRESH_BINARY, 15, -2);
显示二进制图像
show_wait_destroy(“二进制”,bw);
输出图像
现在我们准备应用形态学运算来提取水平线和垂直线,从而将音符与乐谱分开,但首先让我们初始化我们将为此目的使用的输出图像:
创建将用于提取水平线和垂直线的图像
垫水平 = bw.clone();
垫垂直 = bw.clone();
结构元素
正如我们在理论中指定的那样,为了提取我们想要的对象,我们需要创建相应的结构元素。由于我们要提取水平线,因此用于此目的的相应结构元素将具有以下形状:
在源代码中,这由以下代码片段表示:
在水平轴上指定大小
int horizontal_size = horizontal.cols / 30;
创建用于通过形态操作提取水平线的结构元素
垫子 horizontalStructure = getStructuringElement(MORPH_RECT, Size(horizontal_size, 1));
应用形态学操作
显示提取的水平线
show_wait_destroy(“水平”,水平);
这同样适用于具有相应结构元素的垂直线:
这再次表示如下:
指定垂直轴上的大小
int vertical_size = vertical.rows / 30;
创建结构元素,用于通过形态操作提取垂直线
垫垂直结构 = getStructuringElement(MORPH_RECT, Size(1, vertical_size));
应用形态学操作
扩张(vertical, vertical, verticalStructure, Point(-1, -1));
显示提取的垂直线
show_wait_destroy(“垂直”,垂直);
细化边缘/结果
正如你所看到的,我们快到了。但是,在这一点上,您会注意到音符的边缘有点粗糙。因此,我们需要优化边缘以获得更平滑的结果:
反向垂直图像
bitwise_not(垂直、垂直);
show_wait_destroy(“vertical_bit”,垂直);
根据逻辑提取边缘和平滑图像
1.提取边
2.扩张(边缘)
3.src.copyTo(平滑)
4.模糊平滑 IMG
5.smooth.copyTo(src, edges)
第 1 步
垫子边缘;
adaptiveThreshold(垂直, 边缘, 255, ADAPTIVE_THRESH_MEAN_C, THRESH_BINARY, 3, -2);
show_wait_destroy(“边缘”,边缘);
步骤 2
Mat 内核 = Mat::ones(2, 2, CV_8UC1);
扩张(边缘、边缘、内核);
show_wait_destroy(“扩张”,边缘);
步骤 3
垫子光滑;
vertical.copyTo(平滑);
步骤 4
步骤 5
smooth.copyTo(垂直,边缘);
显示最终结果
show_wait_destroy(“平滑 - 最终”,垂直);
在线教程
- 麻省理工学院人工智能视频教程 – 麻省理工人工智能课程
- 人工智能入门 – 人工智能基础学习。Peter Norvig举办的课程
- EdX 人工智能 – 此课程讲授人工智能计算机系统设计的基本概念和技术。
- 人工智能中的计划 – 计划是人工智能系统的基础部分之一。在这个课程中,你将会学习到让机器人执行一系列动作所需要的基本算法。
- 机器人人工智能 – 这个课程将会教授你实现人工智能的基本方法,包括:概率推算,计划和搜索,本地化,跟踪和控制,全部都是围绕有关机器人设计。
- 机器学习 – 有指导和无指导情况下的基本机器学习算法
- 机器学习中的神经网络 – 智能神经网络上的算法和实践经验
- 斯坦福统计学习
有需要的小伙伴,可以点击下方链接免费领取或者V扫描下方二维码免费领取🆓
人工智能书籍
- OpenCV(中文版).(布拉德斯基等)
- OpenCV+3计算机视觉++Python语言实现+第二版
- OpenCV3编程入门 毛星云编著
- 数字图像处理_第三版
- 人工智能:一种现代的方法
- 深度学习面试宝典
- 深度学习之PyTorch物体检测实战
- 吴恩达DeepLearning.ai中文版笔记
- 计算机视觉中的多视图几何
- PyTorch-官方推荐教程-英文版
- 《神经网络与深度学习》(邱锡鹏-20191121)
- …
第一阶段:零基础入门(3-6个月)
新手应首先通过少而精的学习,看到全景图,建立大局观。 通过完成小实验,建立信心,才能避免“从入门到放弃”的尴尬。因此,第一阶段只推荐4本最必要的书(而且这些书到了第二、三阶段也能继续用),入门以后,在后续学习中再“哪里不会补哪里”即可。
第二阶段:基础进阶(3-6个月)
熟读《机器学习算法的数学解析与Python实现》并动手实践后,你已经对机器学习有了基本的了解,不再是小白了。这时可以开始触类旁通,学习热门技术,加强实践水平。在深入学习的同时,也可以探索自己感兴趣的方向,为求职面试打好基础。
第三阶段:工作应用
这一阶段你已经不再需要引导,只需要一些推荐书目。如果你从入门时就确认了未来的工作方向,可以在第二阶段就提前阅读相关入门书籍(对应“商业落地五大方向”中的前两本),然后再“哪里不会补哪里”。
有需要的小伙伴,可以点击下方链接免费领取或者V扫描下方二维码免费领取🆓