OpenCV图像处理

这篇教程介绍了如何使用OpenCV进行形态学操作,包括膨胀和侵蚀,以及如何创建自定义核来提取图像中的直线。示例中展示了如何从乐谱中提取音符,涉及了结构元素的选择和应用,以及相关C++代码实现。
摘要由CSDN通过智能技术生成

目标

在本教程中,您将学习如何:

  • 应用两个非常常见的形态算子(即膨胀和侵蚀),并创建自定义核,以便在水平轴和垂直轴上提取直线。为此,您将使用以下 OpenCV 函数:

    在一个示例中,您的目标是从乐谱中提取音符。

理论

形态学操作

形态学是一组图像处理操作,它们基于预定义的结构元素(也称为内核)处理图像。输出图像中每个像素的值基于输入图像中相应像素与其相邻像素的比较。通过选择内核的大小和形状,您可以构建对输入图像的特定形状敏感的形态操作。

两个最基本的形态学操作是扩张和侵蚀。膨胀将像素添加到图像中物体的边界上,而侵蚀则恰恰相反。添加或删除的像素量分别取决于用于处理图像的结构元素的大小和形状。通常,这两个操作遵循的规则如下:

  • 膨胀:输出像素的值是结构元素大小和形状内所有像素**的最大值。**例如,在二进制图像中,如果输入图像中属于内核范围的任何像素设置为值 1,则输出图像的相应像素也将设置为 1。后者适用于任何类型的图像(例如灰度、bgr 等)。

    morph21.gif

    二值图像上的膨胀

    morph6.gif

    灰度图像上的膨胀

  • 侵蚀:反之亦然。输出像素的值是结构元素大小和形状范围内所有像素的***最小***值。请看下面的示例图:

    morph211.png

    二进制图像上的侵蚀

    morph61.png

    灰度图像上的侵蚀

    结构元素

如上所述,一般来说,在任何形态学操作中,用于探测输入图像的结构元素是最重要的部分。

结构元素是一个仅由 0 和 1 组成的矩阵,可以具有任意形状和大小。通常比正在处理的图像小得多,而值为 1 的像素定义邻域。结构元素的中心像素(称为原点)标识感兴趣的像素 - 正在处理的像素。

例如,下面演示了 7x7 大小的菱形结构元素。

morph12.gif

菱形结构元素及其起源

结构元素可以具有许多常见的形状,例如线条、菱形、圆盘、周期线以及圆形和大小。通常,您选择与要在输入图像中处理/提取的对象具有相同大小和形状的结构元素。例如,要查找图像中的线条,请创建一个线性结构元素,稍后将看到。

法典 C++爪哇岛蟒

本教程代码如下所示。

您也可以从这里下载。

#include < opencv2/core.hpp>

#include < opencv2/imgproc.hpp>

#include < opencv2/highgui.hpp>

#include < iostream>

void show_wait_destroy(const char* winname, cv::Mat img);

使用命名空间 std;

使用命名空间 CV;

int main(int argc, char** argv)

{

CommandLineParser 解析器(argc, argv, “{@input |笔记:.png |输入图像}”);

Mat src = imreadsamples::findFile( parser.get<String>(“@input”) ), IMREAD_COLOR);

​ 如果 (src.())

​ {

cout << “无法打开或找到图像!”<<结束;

cout << “Usage: ” << argv[0] << “ ” << endl;

​ 返回 -1;

​ }

​ 显示源图像

imshow(“src”, src);

​ 将源图像转换为灰色(如果尚未转换为灰色)

灰色;

​ 如果 (src.频道() == 3)

​ {

cvtColor(src, 灰色, COLOR_BGR2GRAY);

​ }

​ 还

​ {

灰色 = src;

​ }

​ 显示灰色图像

show_wait_destroy(“灰色”,灰色);

​ 在灰色bitwise_not应用 adaptiveThreshold,注意 ~ 符号

子bw;

adaptiveThreshold(~gray, bw, 255, ADAPTIVE_THRESH_MEAN_CTHRESH_BINARY, 15, -2);

​ 显示二进制图像

show_wait_destroy(“二进制”,bw);

​ 创建将用于提取水平线和垂直线的图像

子水平 = bw。克隆();

垂直 = bw。克隆();

​ 在水平轴上指定大小

​ int horizontal_size = 水平。科尔斯 / 30;

​ 创建用于通过形态操作提取水平线的结构元素

子 horizontalStructure = getStructuringElementMORPH_RECTSize(horizontal_size, 1));

​ 应用形态学操作

侵蚀(水平,水平,水平结构,(-1,-1));

扩张(水平,水平,水平结构,(-1,-1));

​ 显示提取的水平线

show_wait_destroy(“水平”,水平);

​ 指定垂直轴上的大小

​ int vertical_size = 垂直。行数 / 30;

​ 创建结构元素,用于通过形态操作提取垂直线

垂直结构 = getStructuringElementMORPH_RECTSize(1, vertical_size));

​ 应用形态学操作

侵蚀(垂直,垂直,垂直结构,(-1,-1));

扩张(vertical, vertical, verticalStructure, Point(-1, -1));

​ 显示提取的垂直线

show_wait_destroy(“垂直”,垂直);

​ 反向垂直图像

bitwise_not(垂直、垂直);

show_wait_destroy(“vertical_bit”,垂直);

​ 根据逻辑提取边缘和平滑图像

​ 1.提取边

​ 2.扩张(边缘)

​ 3.src.copyTo(平滑)

​ 4.模糊平滑 IMG

​ 5.smooth.copyTo(src, edges)

​ 第 1 步

子边缘;

adaptiveThreshold(垂直, 边缘, 255, ADAPTIVE_THRESH_MEAN_CTHRESH_BINARY, 3, -2);

show_wait_destroy(“边缘”,边缘);

​ 步骤 2

Mat 内核 = Mat::ones(2, 2, CV_8UC1);

扩张(边缘、边缘、内核);

show_wait_destroy(“扩张”,边缘);

​ 步骤 3

子光滑;

垂直。copyTo(平滑);

​ 步骤 4

blur(平滑,平滑,Size(2, 2));

​ 步骤 5

光滑。copyTo(垂直,边缘);

​ 显示最终结果

show_wait_destroy(“平滑 - 最终”,垂直);

​ 返回 0;

}

void show_wait_destroy(const char* winname, cv::Mat img) {

imshow(winname, img);

moveWindow(winname, 500, 0);

waitKey(0);

destroyWindow(winname);

}

解释/结果 C++爪哇岛蟒

这里获取图像。

加载图像

CommandLineParser 解析器(argc, argv, “{@input |笔记:.png |输入图像}”);

Mat src = imreadsamples::findFile( parser.get<String>(“@input”) ), IMREAD_COLOR);

​ 如果 (src.empty())

​ {

cout << “无法打开或找到图像!”<<结束;

cout << “Usage: ” << argv[0] << “ ” << endl;

​ 返回 -1;

​ }

​ 显示源图像

imshow(“src”, src);

src:.png

灰度

​ 将源图像转换为灰色(如果尚未转换为灰色)

垫灰色;

​ 如果 (src.channels() == 3)

​ {

cvtColor(src, 灰色, COLOR_BGR2GRAY);

​ }

​ 还

​ {

灰色 = src;

​ }

​ 显示灰色图像

show_wait_destroy(“灰色”,灰色);

灰色 .png

灰度到二进制图像

​ 在灰色bitwise_not应用 adaptiveThreshold,注意 ~ 符号

垫子bw;

adaptiveThreshold(~gray, bw, 255, ADAPTIVE_THRESH_MEAN_CTHRESH_BINARY, 15, -2);

​ 显示二进制图像

show_wait_destroy(“二进制”,bw);

二进制.png

输出图像

现在我们准备应用形态学运算来提取水平线和垂直线,从而将音符与乐谱分开,但首先让我们初始化我们将为此目的使用的输出图像:

​ 创建将用于提取水平线和垂直线的图像

垫水平 = bw.clone();

垫垂直 = bw.clone();

结构元素

正如我们在理论中指定的那样,为了提取我们想要的对象,我们需要创建相应的结构元素。由于我们要提取水平线,因此用于此目的的相应结构元素将具有以下形状:

linear_horiz.png

在源代码中,这由以下代码片段表示:

​ 在水平轴上指定大小

​ int horizontal_size = horizontal.cols / 30;

​ 创建用于通过形态操作提取水平线的结构元素

垫子 horizontalStructure = getStructuringElementMORPH_RECTSize(horizontal_size, 1));

​ 应用形态学操作

侵蚀(水平,水平,水平结构,(-1,-1));

扩张(水平,水平,水平结构,(-1,-1));

​ 显示提取的水平线

show_wait_destroy(“水平”,水平);

霍里兹:.png

这同样适用于具有相应结构元素的垂直线:

linear_vert.png

这再次表示如下:

​ 指定垂直轴上的大小

​ int vertical_size = vertical.rows / 30;

​ 创建结构元素,用于通过形态操作提取垂直线

垫垂直结构 = getStructuringElementMORPH_RECTSize(1, vertical_size));

​ 应用形态学操作

侵蚀(垂直,垂直,垂直结构,(-1,-1));

扩张(vertical, vertical, verticalStructure, Point(-1, -1));

​ 显示提取的垂直线

show_wait_destroy(“垂直”,垂直);

垂直.png

细化边缘/结果

正如你所看到的,我们快到了。但是,在这一点上,您会注意到音符的边缘有点粗糙。因此,我们需要优化边缘以获得更平滑的结果:

​ 反向垂直图像

bitwise_not(垂直、垂直);

show_wait_destroy(“vertical_bit”,垂直);

​ 根据逻辑提取边缘和平滑图像

​ 1.提取边

​ 2.扩张(边缘)

​ 3.src.copyTo(平滑)

​ 4.模糊平滑 IMG

​ 5.smooth.copyTo(src, edges)

​ 第 1 步

垫子边缘;

adaptiveThreshold(垂直, 边缘, 255, ADAPTIVE_THRESH_MEAN_CTHRESH_BINARY, 3, -2);

show_wait_destroy(“边缘”,边缘);

​ 步骤 2

Mat 内核 = Mat::ones(2, 2, CV_8UC1);

扩张(边缘、边缘、内核);

show_wait_destroy(“扩张”,边缘);

​ 步骤 3

垫子光滑;

vertical.copyTo(平滑);

​ 步骤 4

blur(平滑,平滑,Size(2, 2));

​ 步骤 5

smooth.copyTo(垂直,边缘);

​ 显示最终结果

show_wait_destroy(“平滑 - 最终”,垂直);

平滑 .png

在线教程

请添加图片描述

人工智能书籍

第一阶段:零基础入门(3-6个月)

新手应首先通过少而精的学习,看到全景图,建立大局观。 通过完成小实验,建立信心,才能避免“从入门到放弃”的尴尬。因此,第一阶段只推荐4本最必要的书(而且这些书到了第二、三阶段也能继续用),入门以后,在后续学习中再“哪里不会补哪里”即可。

第二阶段:基础进阶(3-6个月)

熟读《机器学习算法的数学解析与Python实现》并动手实践后,你已经对机器学习有了基本的了解,不再是小白了。这时可以开始触类旁通,学习热门技术,加强实践水平。在深入学习的同时,也可以探索自己感兴趣的方向,为求职面试打好基础。

第三阶段:工作应用

这一阶段你已经不再需要引导,只需要一些推荐书目。如果你从入门时就确认了未来的工作方向,可以在第二阶段就提前阅读相关入门书籍(对应“商业落地五大方向”中的前两本),然后再“哪里不会补哪里”。

有需要的小伙伴,可以点击下方链接免费领取或者V扫描下方二维码免费领取🆓

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值