从事人工智能领域方面的技术开发与应用已经差不多有两年左右的时间了,作者也从一个对人工智能什么都不懂的小白勉强进阶成为对人工智能行业有了初步了解的初级开发人员。
因此,从今天开始作者希望从一个纯粹的技术人员,向一个能够提供完整行业解决方案的项目人员的转变;简单来说,就是想从事人工智能方面的创业,以人工智能技术服务为中心,结合自身现有的技术功底,为中小企业接入人工智能提供技术服务和方案设计。
关于人工智能创业的思考
当然,这种想法并不是一时产生的;在经过前两年的失业潮之后;再加上这些年对技术领域的思考,才真正明白自己想要什么,想做什么。
关于技术创业来说,其实主要有两种方式,一种是利用自身的技术优势开发产品,去解决某个领域的问题;但由于自身是技术出身,对产品,市场,营销等方面并不擅长;甚至在单纯的技术领域,作者也仅仅只是擅长某一部分;比如说在前端设计和实现就不是很擅长。
而在去年大概这个时候,也尝试过想做一个人工智能服务的小程序;但想着很简单,但在实际操作中却面临着各种各样的问题。
比如说产品设计,产品定位,功能开发,UI交互,市场推广等各个方面都面临着各种各样的问题;总之,以产品为切入点进行创业,对个人来说是一项很艰巨的工程。
再加上由于无法脱产把全部时间和精力投入到产品设计和开发,因此之前做的功能过一段时间就忘了,然后下一步也不知道应该怎么开始。
所以,经过这次尝试之后,才发现对个人创业者来说,前期应该以周期短,回款快,成本低的方式进行创业才是一个比较好的选择。
因此,作者目前就想从事第二种方式——项目制;以自身的技术能力为基础,为其它企业提供技术服务;比如提供人工智能技术咨询,人工智能技术培训或者解决方案的设计与实施。
这种方式的好处就是有具体的项目需求,项目周期短,能够快速积累技术与行业应用的经验,以及尽可能的了解市场需求;为以后的产品化,专业化积累经验。
但这种方式的坏处也是显而易见的,比如前期的冷启动,怎么找到自己的第一个客户;以及技术与不同行业场景的结合,可能每一个客户都需要单独的行业解决方案;而其中的很多东西并不共通,就会导致大量的重复劳动,以及市场风险。而且由于项目制本身不具备产品化的快速复制能力,就导致项目制本身的边际扩展成本相对较高。
但从个人的角度出发,作为一个没经验没资金没团队,只有技术的开发人员来说,项目制依然是目前最优的选择。
OK,以上是关于作者个人对人工智能领域创业的想法;而下面就来具体谈一下可行性。
人工智能技术服务创业的可行性分析
以作者这些年来对技术的认识来说,技术的本质就是一种工具;对大部分开发人员来说,我们并不需要研究高大上的技术,只需要能够把不同的技术相结合,能够拿出一个能够解决真实场景下的解决方案即可。
毕竟,对中小企业来说,需要的是快速迭代快速试错的MVP(最小化可行性产品)产品,而不是你用了什么高大上的技术,以及这个技术有多么多么的牛逼。
生存才是中小企业首先要考虑的问题。
而在技术和市场竞争方面,个人又很难和那些大厂或规模型企业进行竞争;因此最好的方式就是选择某个垂直领域入手;毕竟从市场的角度来说,大企业需要庞大的市场和用户群体才能生存,而对个人创业者来说完全没有这方面的顾虑,毕竟市场再小也不至于养不活你一个人或者一个小团队。
而从技术的角度来说,人工智能技术的底座技术就那么多,虽然说人工智能的技术迭代速度很快,但其核心功能点并不会有太大的变化;哪怕有颠覆性的创新,对应用方来说也不过是多了一种选择。
而随着人工智能技术的发展,其应用场景和范围理所当然的会越来越广,因此作者本人相信这个行业存在着巨大的市场潜力。
最后,欢迎有志同道合或者对人工智能感兴趣的个人或老板来进行交流;并且,为了快速打开市场积累经验,可以免费或少尝的提供咨询服务或项目服务。
如何系统的去学习大模型LLM ?
大模型时代,火爆出圈的LLM大模型让程序员们开始重新评估自己的本领。 “AI会取代那些行业
?”“谁的饭碗又将不保了?
”等问题热议不断。
事实上,抢你饭碗的不是AI,而是会利用AI的人。
继科大讯飞、阿里、华为
等巨头公司发布AI产品后,很多中小企业也陆续进场!超高年薪,挖掘AI大模型人才! 如今大厂老板们,也更倾向于会AI的人,普通程序员,还有应对的机会吗?
与其焦虑……
不如成为「掌握AI工具的技术人
」,毕竟AI时代,谁先尝试,谁就能占得先机!
但是LLM相关的内容很多,现在网上的老课程老教材关于LLM又太少。所以现在小白入门就只能靠自学,学习成本和门槛很高。
基于此,我用做产品的心态来打磨这份大模型教程,深挖痛点并持续修改了近70次后,终于把整个AI大模型的学习门槛,降到了最低!
在这个版本当中:
第一您不需要具备任何算法和数学的基础
第二不要求准备高配置的电脑
第三不必懂Python等任何编程语言
您只需要听我讲,跟着我做即可,为了让学习的道路变得更简单,这份大模型教程已经给大家整理并打包,现在将这份 LLM大模型资料
分享出来:包括LLM大模型书籍、640套大模型行业报告、LLM大模型学习视频、LLM大模型学习路线、开源大模型学习教程
等, 😝有需要的小伙伴,可以 扫描下方二维码领取🆓↓↓↓
一、LLM大模型经典书籍
AI大模型已经成为了当今科技领域的一大热点,那以下这些大模型书籍就是非常不错的学习资源。
二、640套LLM大模型报告合集
这套包含640份报告的合集,涵盖了大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。(几乎涵盖所有行业)
三、LLM大模型系列视频教程
四、LLM大模型开源教程(LLaLA/Meta/chatglm/chatgpt)
五、AI产品经理大模型教程
LLM大模型学习路线 ↓
阶段1:AI大模型时代的基础理解
-
目标:了解AI大模型的基本概念、发展历程和核心原理。
-
内容:
- L1.1 人工智能简述与大模型起源
- L1.2 大模型与通用人工智能
- L1.3 GPT模型的发展历程
- L1.4 模型工程
- L1.4.1 知识大模型
- L1.4.2 生产大模型
- L1.4.3 模型工程方法论
- L1.4.4 模型工程实践
- L1.5 GPT应用案例
阶段2:AI大模型API应用开发工程
-
目标:掌握AI大模型API的使用和开发,以及相关的编程技能。
-
内容:
- L2.1 API接口
- L2.1.1 OpenAI API接口
- L2.1.2 Python接口接入
- L2.1.3 BOT工具类框架
- L2.1.4 代码示例
- L2.2 Prompt框架
- L2.3 流水线工程
- L2.4 总结与展望
阶段3:AI大模型应用架构实践
-
目标:深入理解AI大模型的应用架构,并能够进行私有化部署。
-
内容:
- L3.1 Agent模型框架
- L3.2 MetaGPT
- L3.3 ChatGLM
- L3.4 LLAMA
- L3.5 其他大模型介绍
阶段4:AI大模型私有化部署
-
目标:掌握多种AI大模型的私有化部署,包括多模态和特定领域模型。
-
内容:
- L4.1 模型私有化部署概述
- L4.2 模型私有化部署的关键技术
- L4.3 模型私有化部署的实施步骤
- L4.4 模型私有化部署的应用场景
这份 LLM大模型资料
包括LLM大模型书籍、640套大模型行业报告、LLM大模型学习视频、LLM大模型学习路线、开源大模型学习教程
等, 😝有需要的小伙伴,可以 扫描下方二维码领取🆓↓↓↓