大模型本地部署(Ollama + Chatbox AI)

后端 Ollama

1. 下载安装

到Ollama下载安装即可,安装过程和一般软件一致,保存地址目前只能默认在C盘。

图片

2. 命令行使用

打开windows命令行,可在命令行使用。

基本命令:

查看版本:

ollama -v

使用大模型(以deepseek-r1-1.5b模型为例,首次使用会下载):

ollama run deepseek-r1:1.5b

图片

图片

3. 退出

Ctrl+D 退出。

前端 Chatbox AI

1. 下载安装

到 Chatbox AI 下载安装即可,安装过程和一般软件一致。

图片

2. 设置大模型API

点击 “使用本地模型” → “Ollama API”,选择 “deepseek-r1-1.5b” 模型,保存。

图片

图片

图片

3. 对话

新建对话,就能通过窗口与AI交流。

图片

 如何系统的去学习大模型LLM ?

大模型时代,火爆出圈的LLM大模型让程序员们开始重新评估自己的本领。 “AI会取代那些行业?”“谁的饭碗又将不保了?”等问题热议不断。

事实上,抢你饭碗的不是AI,而是会利用AI的人。

科大讯飞、阿里、华为等巨头公司发布AI产品后,很多中小企业也陆续进场!超高年薪,挖掘AI大模型人才! 如今大厂老板们,也更倾向于会AI的人,普通程序员,还有应对的机会吗?

与其焦虑……

不如成为「掌握AI工具的技术人」,毕竟AI时代,谁先尝试,谁就能占得先机!

但是LLM相关的内容很多,现在网上的老课程老教材关于LLM又太少。所以现在小白入门就只能靠自学,学习成本和门槛很高。

基于此,我用做产品的心态来打磨这份大模型教程,深挖痛点并持续修改了近70次后,终于把整个AI大模型的学习门槛,降到了最低!

在这个版本当中:

第一您不需要具备任何算法和数学的基础
第二不要求准备高配置的电脑
第三不必懂Python等任何编程语言

您只需要听我讲,跟着我做即可,为了让学习的道路变得更简单,这份大模型教程已经给大家整理并打包,现在将这份 LLM大模型资料 分享出来:包括LLM大模型书籍、640套大模型行业报告、LLM大模型学习视频、LLM大模型学习路线、开源大模型学习教程等, 😝有需要的小伙伴,可以 扫描下方二维码领取🆓↓↓↓

一、LLM大模型经典书籍

AI大模型已经成为了当今科技领域的一大热点,那以下这些大模型书籍就是非常不错的学习资源。

在这里插入图片描述

二、640套LLM大模型报告合集

这套包含640份报告的合集,涵盖了大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。(几乎涵盖所有行业)
在这里插入图片描述

三、LLM大模型系列视频教程

在这里插入图片描述

四、LLM大模型开源教程(LLaLA/Meta/chatglm/chatgpt)

在这里插入图片描述

五、AI产品经理大模型教程

在这里插入图片描述

LLM大模型学习路线 

阶段1:AI大模型时代的基础理解

  • 目标:了解AI大模型的基本概念、发展历程和核心原理。

  • 内容

    • L1.1 人工智能简述与大模型起源
    • L1.2 大模型与通用人工智能
    • L1.3 GPT模型的发展历程
    • L1.4 模型工程
    • L1.4.1 知识大模型
    • L1.4.2 生产大模型
    • L1.4.3 模型工程方法论
    • L1.4.4 模型工程实践
    • L1.5 GPT应用案例

阶段2:AI大模型API应用开发工程

  • 目标:掌握AI大模型API的使用和开发,以及相关的编程技能。

  • 内容

    • L2.1 API接口
    • L2.1.1 OpenAI API接口
    • L2.1.2 Python接口接入
    • L2.1.3 BOT工具类框架
    • L2.1.4 代码示例
    • L2.2 Prompt框架
    • L2.3 流水线工程
    • L2.4 总结与展望

阶段3:AI大模型应用架构实践

  • 目标:深入理解AI大模型的应用架构,并能够进行私有化部署。

  • 内容

    • L3.1 Agent模型框架
    • L3.2 MetaGPT
    • L3.3 ChatGLM
    • L3.4 LLAMA
    • L3.5 其他大模型介绍

阶段4:AI大模型私有化部署

  • 目标:掌握多种AI大模型的私有化部署,包括多模态和特定领域模型。

  • 内容

    • L4.1 模型私有化部署概述
    • L4.2 模型私有化部署的关键技术
    • L4.3 模型私有化部署的实施步骤
    • L4.4 模型私有化部署的应用场景

这份 LLM大模型资料 包括LLM大模型书籍、640套大模型行业报告、LLM大模型学习视频、LLM大模型学习路线、开源大模型学习教程等, 😝有需要的小伙伴,可以 扫描下方二维码领取🆓↓↓↓

 

<think>好的,我需要帮助用户了解如何在本地部署集成OllamaChatbox的DeepSeek模型。首先,我需要整理用户提供的引用内容,看看里面有哪些关键步骤。根据引用[2]和引用[3],部署过程大致分为三个步骤:安装Ollama、安装DeepSeek模型,以及配置Chatbox。 首先,安装Ollama。用户提到需要下载对应操作系统的安装包,然后运行安装程序。安装完成后,可能还需要验证是否安装成功,比如通过命令行输入ollama --version。接下来,安装DeepSeek模型,这里有不同的版本,如1.5B、7B、14B等。用户需要运行类似ollama run deepseek-r1:7b的命令来下载和安装模型。需要注意模型名称的正确性,避免输入错误。 然后是配置Chatbox。用户需要下载并安装Chatbox,然后在设置中选择API类型为Ollama,填写正确的接口地址http://localhost:11434,并输入对应的模型名称。同时,防火墙设置也很重要,确保端口11434开放,否则连接可能会失败。 可能还需要考虑不同操作系统下的具体步骤是否有差异,比如Windows和macOS在安装Ollama时的区别。另外,用户可能会遇到模型下载速度慢的问题,这时候可能需要检查网络连接或者使用镜像源。在配置Chatbox时,如果无法连接,可能需要检查Ollama服务是否正在运行,或者模型名称是否正确。 还需要提醒用户注意模型的版本选择,不同版本的模型对硬件资源的要求不同,比如较大的模型可能需要更多的内存和显存。如果用户遇到内存不足的问题,可能需要选择较小的模型版本,如1.5B或7B。 最后,生成相关问题时,需要覆盖用户可能关心的性能优化、应用场景以及常见问题解决方法,比如如何提升模型响应速度、适合的任务类型等。确保回答结构清晰,分步骤说明,让用户能够逐步跟随操作,避免遗漏关键细节。</think>### 如何在本地部署集成 OllamaChatbox 的 DeepSeek 模型? 以下是分步部署指南,结合引用内容整理: #### 1. **安装 Ollama** - **下载安装包**:访问 [Ollama 官网](https://ollama.ai/) 下载对应操作系统的安装包(支持 Windows/macOS/Linux)[^2]。 - **运行安装程序**:安装完成后,Ollama 会默认启动后台服务,可通过命令行验证是否安装成功: ```bash
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值