前言
借着公司AI战略的东风,我决定踏上学习大模型的旅程,吸收新知识并且输出是我觉得最有效的学习方法,作为一名技术菜鸟,我深知自己不是算法出身,但我相信"学以致用"是最好的学习方法——通过实际应用来理解理论,通过解决问题来掌握知识。
这个系列文章将记录我从零开始学习大模型的完整过程,从最初的"什么是大模型"这样的基础问题,到最终能够实际应用大模型解决工作生活中的问题。我希望通过这种"边学边输出"的方式,不仅能巩固自己的理解,也能帮助其他和我一样的技术初学者。
大模型
大模型(Large Language Model, LLM)是人工智能领域近年来最具革命性的技术突破之一。
很多同学是在2022年底ChatGPT爆红时才注意到大模型(LLM)的概念,但大模型的发展历程远比这个时间点要早得多,其实不然,我们看下图
到了今年的deepseek的横空出世让更多国人认识到了大模型,而Qwen3的出现让本地大模型变得更加平民化了。
大模型是指通过海量数据训练、具有百亿级以上参数规模的深度学习模型,本质上是参数化的世界知识压缩体,其发展正在重塑人类知识获取和处理的方式。理解大模型,就是理解未来人机交互的基础范式。这句话听起来比较深奥, 大家不用着急我们慢慢使用过程中就会逐渐理解这句话了。
在众多大模型中,我强烈推荐Qwen3(通义千问3)作为入门首选,原因如下:
-
硬件要求低,8G内存就可以跑4B
-
成本低,免费开源且不需要安全密钥
-
生态完善:可以看Qwen官网
qwen3的硬件成本:
- 最低配置
:8GB RAM,支持 AVX2 指令集的 CPU(现代的cpu都支持)
- 推荐配置
:16GB+ RAM,现代多核 CPU 或 NVIDIA GPU (CUDA 支持)
- 存储需求
:约 8-10GB 用于模型文件和依赖库
如果是mac:即使是最低配的mac也能跑8B了
我三年前的机器
再看下qwen3不同的规格的说明
也就是说这台3年前的电脑可以跑14B中型应用的规模,个人使用完全足够了。
部署神器:ollama
Ollama 是一个开源的大型语言模型(LLM)本地化运行平台,它让用户能够轻松地在个人电脑上部署和运行各类大模型。
我们用ollama来部署Qwen3,非常简单:
第一步:安装Ollama
通过官网下载安装:https://ollama.com/download
如果你是mac,可以直接
brew install ollama
第二步:
基于ollama安装大模型, 如上面所说qwen3大大拉低了部署硬件的成本,几年前的电脑也可以流畅使用,为了快速演示我们这次选择安装qwen3:4b,其实14b也没问题
ollama pull qwen3:4b
运行模型:
先启动服务:
ollama serve
再运行qwen3
ollama run qwen3:4b
执行run命令后就可以与qwen3交互了:
速度非常快,大家可以自行按照体验一下
通过anythingllm拓展大模型功能
当然部署Qwen3等大模型只是第一步。AnythingLLM的出现,就像给大模型装上了"大脑皮层",让它从单纯的文本生成器进化成真正的AI助手。
AnythingLLM 是一款专为企业和个人设计的全功能大模型应用容器,它将复杂的AI技术简化为可立即投入使用的生产力工具
-
开箱即用的智能体系统 - 无需编码即可创建专业角色
-
知识库的"消化吸收"能力 - 能真正理解你上传的文档
-
多模型路由 - 可同时连接本地和云端的不同模型
第一步:安装anythingllm
直接去官网下载安装:https://anythingllm.com/
mac用户可以
brew install anythingllm
第二步:
启动anythingllm,做好相关配置
建立好新工作区,进入聊天区
这样我们就拥有了自己的LUI界面。
总结
经过前期的工具准备,我们已经完成了:
-
Qwen3的本地部署(阿里云开源的中英双语模型)
-
Ollama的配置(大模型本地运行框架)
-
AnythingLLM的安装(私人知识库管理系统)
现在,这些工具不再只是技术演示,而真正成为了可以创造价值的私人AI基础设施。让我们跳过繁琐的理论,直接进入激动人心的应用场景。
-
私人知识库管家
-
家庭健康问答
-
开发者测试平台
-
围绕着个人与家庭还有更多的场景
作为一名初学者,我深知文章中难免会有不专业或错误之处。我真诚欢迎各位读者的指正和建议,这将是我进步的重要动力。
如何系统的去学习大模型LLM ?
大模型时代,火爆出圈的LLM大模型让程序员们开始重新评估自己的本领。 “AI会取代那些行业
?”“谁的饭碗又将不保了?
”等问题热议不断。
事实上,抢你饭碗的不是AI,而是会利用AI的人。
继科大讯飞、阿里、华为
等巨头公司发布AI产品后,很多中小企业也陆续进场!超高年薪,挖掘AI大模型人才! 如今大厂老板们,也更倾向于会AI的人,普通程序员,还有应对的机会吗?
与其焦虑……
不如成为「掌握AI工具的技术人
」,毕竟AI时代,谁先尝试,谁就能占得先机!
但是LLM相关的内容很多,现在网上的老课程老教材关于LLM又太少。所以现在小白入门就只能靠自学,学习成本和门槛很高。
基于此,我用做产品的心态来打磨这份大模型教程,深挖痛点并持续修改了近70次后,终于把整个AI大模型的学习门槛,降到了最低!
在这个版本当中:
第一您不需要具备任何算法和数学的基础
第二不要求准备高配置的电脑
第三不必懂Python等任何编程语言
您只需要听我讲,跟着我做即可,为了让学习的道路变得更简单,这份大模型教程已经给大家整理并打包,现在将这份 LLM大模型资料
分享出来:包括LLM大模型书籍、640套大模型行业报告、LLM大模型学习视频、LLM大模型学习路线、开源大模型学习教程
等, 😝有需要的小伙伴,可以 扫描下方二维码领取🆓↓↓↓
一、LLM大模型经典书籍
AI大模型已经成为了当今科技领域的一大热点,那以下这些大模型书籍就是非常不错的学习资源。
二、640套LLM大模型报告合集
这套包含640份报告的合集,涵盖了大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。(几乎涵盖所有行业)
三、LLM大模型系列视频教程
四、LLM大模型开源教程(LLaLA/Meta/chatglm/chatgpt)
五、AI产品经理大模型教程
LLM大模型学习路线 ↓
阶段1:AI大模型时代的基础理解
-
目标:了解AI大模型的基本概念、发展历程和核心原理。
-
内容:
- L1.1 人工智能简述与大模型起源
- L1.2 大模型与通用人工智能
- L1.3 GPT模型的发展历程
- L1.4 模型工程
- L1.4.1 知识大模型
- L1.4.2 生产大模型
- L1.4.3 模型工程方法论
- L1.4.4 模型工程实践
- L1.5 GPT应用案例
阶段2:AI大模型API应用开发工程
-
目标:掌握AI大模型API的使用和开发,以及相关的编程技能。
-
内容:
- L2.1 API接口
- L2.1.1 OpenAI API接口
- L2.1.2 Python接口接入
- L2.1.3 BOT工具类框架
- L2.1.4 代码示例
- L2.2 Prompt框架
- L2.3 流水线工程
- L2.4 总结与展望
阶段3:AI大模型应用架构实践
-
目标:深入理解AI大模型的应用架构,并能够进行私有化部署。
-
内容:
- L3.1 Agent模型框架
- L3.2 MetaGPT
- L3.3 ChatGLM
- L3.4 LLAMA
- L3.5 其他大模型介绍
阶段4:AI大模型私有化部署
-
目标:掌握多种AI大模型的私有化部署,包括多模态和特定领域模型。
-
内容:
- L4.1 模型私有化部署概述
- L4.2 模型私有化部署的关键技术
- L4.3 模型私有化部署的实施步骤
- L4.4 模型私有化部署的应用场景
这份 LLM大模型资料
包括LLM大模型书籍、640套大模型行业报告、LLM大模型学习视频、LLM大模型学习路线、开源大模型学习教程
等, 😝有需要的小伙伴,可以 扫描下方二维码领取🆓↓↓↓