低代码AI:机器学习库和框架

本章介绍了简化机器学习(ML)模型开发的ML框架。通常情况下,您需要了解数学、统计和ML的基本工作原理,才能构建和训练ML流程。这些框架通过自动化许多耗时的ML工作流任务,如特征选择、算法选择、代码编写、流程开发、性能调整和模型部署,来帮助您。

无代码自动机器学习(No-Code AutoML)

想象一下,您是一家公用事业公司的业务分析师。您有一个项目,需要帮助公司开发面向高电能消耗社区的营销和宣传计划。数据以逗号分隔值(CSV)文件格式提供。

您没有机器学习(ML)背景,也没有任何编程知识,但团队领导要求您承担这个项目,因为您表达了对ML以及如何在组织中应用ML的兴趣。尽管您没有编程经验,但您的一些初步研究结果得出了以下一些观察:

  • 对于像您这样的非编码人员,有自动化的无代码ML框架,具有图形用户界面(GUI),您可以使用它们来构建和训练ML模型,而无需编写一行代码。
  • 对于轻度编程人员,有低代码ML框架,可以通过编写少量代码来构建和训练ML模型。
  • 对于经验丰富的编程人员,有ML库,允许您在ML工作流的每个阶段编写代码,从而获得更大的灵活性和控制。

基于您的公用事业市场推广项目和使用案例中的数据,您确定目标是基于多个变量(邮政编码、月份、年份和客户类别:住宅、商业、工业和农业)来预测总千瓦时(kWh)电能消耗。

假设您需要快速获得一个基准预测,这是使用AutoML的绝佳用例。基于图形用户界面(GUI)的AutoML框架最容易使用。图 3-1 显示了您可以用于业务用例的典型AutoML无代码工作流程的高层概述。本例使用了谷歌的Vertex AI,这是一个帮助您构建、部署和扩展ML模型的ML平台。总的来说,谷歌AutoML、微软Azure AutoML和AWS SageMaker AutoML都是功能强大的AutoML解决方案,可以帮助您构建和部署ML模型,而无需编写任何代码。最适合您的解决方案将取决于您的具体需求和要求。

image.png

由于文件格式是CSV,您选择了“表格”选项卡。鉴于总kWh是输出,并且是您要预测的数值,您可以看出这是一个回归任务。由于您拥有多个变量的列名(或标签),这是一个监督式机器学习问题。没有标签的数据需要进行无监督的机器学习任务,比如聚类。图3-2 显示了选择了“回归/分类”作为目标。

image.png

一些框架在数据加载后会生成统计信息。其他框架可以通过自动检测和清理缺失值、异常值以及重复的行和列来减少手动清理数据的需要。请注意,还有一些额外的步骤可以采用,比如在加载数据后检查缺失值和查看数据统计信息。图3-3显示了数据集上传选项。

image.png

图3-4显示了使用Google的Vertex AI框架生成的能源公用事业数据集的统计信息。没有缺失值,并且每列的不同值数量都显示出来。例如,有145个邮政编码。由于邮政编码是一个数字,所以“转换”列显示为“数字”。然而,邮政编码是一个分类特征,因为每个邮政编码都不同,因此可以被归入自己的“类别”中。将邮政编码从数字变为分类特征只需选择下拉菜单以自定义转换。

image.png

图3-5显示了邮政编码现在作为一个分类特征。还请注意最右边的列,您可以选择或取消选择要用于训练的特征。

image.png

AutoML呈现了每个特征的数据概况。图3-6显示了92694邮编作为最常见的特征,这表明更多的客户住在该邮编区域。您可以利用这些信息进行您的营销活动。

image.png

在第3步,您可以选择一些培训参数来训练一个新模型。Vertex AI的“Train new model”窗口允许您选择训练方法、模型详细信息、训练选项以及计算和定价。请注意,在“训练方法”参数中,数据集和目标(回归)被显示为输入。AutoML是默认选择的。图3-7显示了“Train new model”窗口。

image.png

一旦所有参数都输入完毕,您就可以开始训练作业。图3-8显示它已准备好提交训练作业以进行训练。

image.png

在训练后,将呈现模型训练结果。现在,您可以在进行下一步之前向团队展示初步发现,下一步可能包括更多的实验或将模型部署为一个网页,用户可以在上面选择客户类别和邮政编码,然后显示预测的总kWh。

图3-9显示了训练结果。在接下来的章节中,您将看到一个完整的AutoML项目示例,其中会更详细地讨论图3-9中呈现的指标。

image.png

模型特征归因告诉您每个特征对模型训练的影响有多大。图3-10显示了归因值以百分比表示;百分比越高,相关性越强,也就是说,该特征对模型训练的影响越大。模型特征归因是使用采样的Shapley方法来表示的(请参考GitHub上的术语表)。

image.png

图3-11显示了模型元数据。您可以看到有关模型的各种信息,从其ID、创建日期和训练时间,到使用的数据集、目标列、数据拆分百分比分配以及在这种情况下使用的模型评估指标,即均方根误差(RMSE)。单击“模型”或“试验”可让您获取有关AutoML使用的模型的信息。

image.png

AutoML是如何工作的

实施机器学习工作流程是耗时的。正如你在前面的市场营销项目中所看到的,AutoML 简化了为你构建机器学习模型的过程,无需编写任何代码。在该项目中,图 3-12 显示了工作流程,其中的第 2、3 和 4 阶段都不需要编写代码。

image.png

为了更好地理解 AutoML 的工作原理,请注意你不需要做的事情!首先,你不需要设置运行 Python Jupyter Notebook 的环境。无需安装任何软件库。事实上,根本不需要安装任何东西。一旦你将 CSV 数据文件上传到 Vertex AI,文件就会存储在云端。如果你使用 Python 和 Pandas,那么无需编写任何代码来加载数据集,甚至不需要将数据集拆分为训练、验证和测试文件。虽然数据很干净,但有两个分类特征:邮政编码和客户类别。如果你编写了这两个特征的代码,那么你将不得不进行“独热编码”。独热编码是将分类数据变量转换为数字值的过程。以下是用于邮政编码特征进行独热编码的示例代码:

ini
复制代码
from sklearn.preprocessing import OneHotEncoder
one_hot = OneHotEncoder()
encoded = one_hot.fit_transform(df[[`zipcode`]])
df[one_hot.categories[0]] = encoded.toarray()

独热编码是特征转换或工程的一个示例。你还可以轻松地选择目标(输出)和/或取消选择特征,或者删除它们。你不必编写类似于以下示例的代码,其中从 Pandas DataFrame 中删除了“id”列:

go
复制代码
import pandas as pd
df = pd.read_csv(`/path/file.tsv`, header=0, delimiter=`\t`)
print df.drop(`id`, 1)

你的数据集中的更多特征会导致更复杂的关系,这些关系可能是非线性的。神经网络非常适用于处理非线性关系。你可能对这一切没有任何概念,所以让我们进一步详细解释一下。

正如前面所述,这是一个预测问题,因为你想知道是否可以根据平均千瓦时、客户类别、月份、年份和邮政编码来预测未来的总千瓦时。更深入地看,这种用例可以由于输入特征的数量而被视为复杂——它具有多个变量并且是多元的。这些类型的复杂关系被认为是非线性的,因为你不能简单地绘制一条“直线”来“最佳拟合”已知的总千瓦时和其他多个变量之间的关系。

这个数据集非常适合使用神经网络。神经网络在没有先前的机器学习知识的情况下难以构建。尽管神经网络是以后章节的主题,但让我们快速看一下一个图像,以确定你不必考虑的内容。图3-13显示了一个典型的神经网络,具有输入层、隐藏层和输出层。

image.png

在Python中编写神经网络的代码将类似于这样:

python
复制代码
# Create the 'Network' class and define its arguments:
# Set the number of neurons/nodes for each layer
# and initialize the weight matrices:
class Network:

    def __init__(self, 
                 no_of_in_nodes, 
                 no_of_out_nodes, 
                 no_of_hidden_nodes,
                 learning_rate):
        self.no_of_in_nodes = no_of_in_nodes
        self.no_of_out_nodes = no_of_out_nodes
        self.no_of_hidden_nodes = no_of_hidden_nodes
        self.learning_rate = learning_rate 
        self.create_weight_matrices()
        
    def create_weight_matrices(self):
        """ A method to initialize the weight matrices of the neural network"""
        rad = 1 / np.sqrt(self.no_of_in_nodes) 
        X = truncated_normal(mean=0, sd=1, low=-rad, upp=rad)
        self.weights_in_hidden = X.rvs((self.no_of_hidden_nodes, 
                                       self.no_of_in_nodes))
        rad = 1 / np.sqrt(self.no_of_hidden_nodes)
        X = truncated_normal(mean=0, sd=1, low=-rad, upp=rad)
        self.weights_hidden_out = X.rvs((self.no_of_out_nodes, 
                                        self.no_of_hidden_nodes))

    def train(self, input_vector, target_vector):
        pass # More work is needed to train the network
         
    def run(self, input_vector):
        """
        running the network with an input vector 'input_vector'. 
        'input_vector' can be tuple, list or ndarray
        """
        # Turn the input vector into a column vector:
        input_vector = np.array(input_vector, ndmin=2).T

        # activation_function() implements the expit function,
        # which is an implementation of the sigmoid function:
        input_hidden = activation_function(
            self.weights_in_hidden @ input_vector)
        output_vector = activation_function(
            self.weights_hidden_out @ input_hidden)
        return output_vector

使用Keras,编写神经网络的代码会变得更加简单。编写神经网络的代码将类似于这样:

ini
复制代码
# Import python libraries required in this example:
from keras.layers import Dense, Activation
from keras.models import Sequential
import numpy as np

# Use numpy arrays to store inputs (x) and outputs (y):
x = np.array([[0, 0], [0, 1], [1, 0], [1, 1]])
y = np.array([[0], [1], [1], [0]]) 

# Define the network model and its arguments. 
# Set the number of neurons/nodes for each layer:
model = Sequential()
model.add(Dense(2, input_shape=(2,)))
model.add(Activation('relu'))
model.add(Dense(1))
model.add(Activation('relu')) 

# Compile the model and calculate its accuracy:
model.compile(
    loss='mean_squared_error', optimizer='rmse', metrics=['accuracy']
) 

# Print a summary of the Keras model:
model.summary()

在构建训练作业时,您只需选择数据集,然后选择一些训练参数。不需要进行以下操作:

  • 不需要了解要使用哪种回归算法

有许多类型的回归分析技术,每种方法的使用取决于许多因素。这些因素包括目标变量的类型、回归线的形状以及独立变量的数量。

  • 不需要了解“经典机器学习”与神经网络的区别

不需要理解常用的神经网络构建模块,如层、神经元(节点)、目标、激活函数或优化器(请参阅GitHub上的词汇表)。

  • 不需要了解训练过程或任何模型优化策略

在训练过程中,AutoML专注于优化模型权重和架构。选择适当的架构是由AutoML完成的。

  • 不需要了解或指定计算资源

当您选择“一个节点”时,AutoML会选择正确的机器类型。

机器学习即服务(MLaaS)

AutoML是云供应商提供的机器学习即服务(MLaaS)平台的一部分。前三大云供应商是谷歌、亚马逊和微软。如果你对云架构和服务不熟悉,图3-14显示了典型的云“平台金字塔”。

金字塔的底层是IaaS(基础架构即服务)。将这一层视为硬件和存储层,客户使用云供应商的服务器来处理实际的计算和存储服务,用于存储数据集文件、模型、容器等等。中间层是PaaS(平台即服务)。将这一层视为提供平台(操作系统如Linux或Windows),客户可在其上运行自己的软件。顶层是SaaS(软件即服务)。AutoML是这一层的一个最好的例子,你不必配置服务器或编写代码,只需打开浏览器并使用它。

image.png

谷歌、亚马逊和微软提供服务来支持整个机器学习工作流程,包括机器学习算法的训练和调整、数据可视化、数据预处理和深度学习。它们还提供托管的Jupyter Notebook,用于使用诸如scikit-learn、Keras、TensorFlow和PyTorch等框架。表3-1显示了MLaaS的优点。

截屏2023-10-17 13.51.28.png

AutoML 是一项有价值的工具,适用于希望利用机器学习改进其运营的企业和组织。通过自动化构建机器学习模型中涉及的许多耗时且复杂的任务,AutoML 可帮助企业和组织更快地启动其模型。以下是一些关于如何在当今的企业中使用 AutoML 的具体示例:

  • 电信

电信公司正在使用 AutoML 来改善客户流失预测、欺诈检测和网络优化。

  • 制造业

制造业公司正在使用 AutoML 来提高产品质量、优化生产流程和预测设备故障。

  • 零售

零售商正在使用 AutoML 来个性化客户体验、推荐产品和优化库存水平。

  • 医疗保健

医疗保健公司正在使用 AutoML 来诊断疾病、预测患者结果和个性化治疗计划。

这些只是 AutoML 在今天的企业中使用的一些示例。随着 AutoML 技术不断成熟,预计将来会看到更多创新的 AutoML 应用。以下是 AutoML 的好处的摘要:

截屏2023-10-17 13.54.25.png

图 3-15 展示了Google的Vertex AI解决方案,图 3-16 展示了Microsoft的Azure ML Studio解决方案,图 3-17 展示了Amazon SageMaker的AutoML解决方案。

image.png

image.png

image.png

低代码 ML 框架

低代码自动机器学习需要安装和配置库,以及一些 Python 或结构化查询语言(SQL)的知识。这里定义低代码为以下情况:

  • 在现有的 ML 框架之上提供“抽象层”的 ML 框架。
  • 允许你使用 SQL 运行 ML 模型的数据库,或者允许你运行包括 ML 代码的 Python 代码的数据库。 表3-3显示了一些示例。

截屏2023-10-17 13.56.49.png

SQL ML 框架

数据分析师和数据科学家通常使用 SQL 进行数据分析。他们可以充分利用其现有的 SQL 技能和专业知识,并将其应用于机器学习,而无需具备机器学习编程的背景。如果他们懂 SQL 但不会编写 Python、Java 或 R 代码,他们可以在 SQL-ML 框架内进行机器学习项目。这就是为什么 SQL-ML 框架被认为是低代码的原因。不需要大量的 SQL 编码。

使用数据库/数据仓库进行 SQL-ML 的好处包括:

  1. 大规模数据集的模型构建:当您可以在数据所在的地方构建机器学习模型时,ML SQL 代码保持“接近数据”,减少了延迟(数据传输时间)。这对于使用深度学习处理大型数据集,其中训练需要在训练、验证和测试中迭代通过一部分数据的情况尤为重要。
  2. 与现有 ML 系统的后端集成:与云提供商的后端 ML 框架(例如 Google 的 Vertex AI、Amazon 的 SageMaker 和 Microsoft 的 Azure)集成。
  3. 常见的模型构建语句:它们都使用 CREATE MODEL SQL 命令,并将训练数据指定为表格或 SELECT 语句。然后,在数据仓库内编译和导入训练好的模型,并准备一个 SQL 推断函数,可以立即在 SQL 查询中使用。
  4. 应用场景:典型的应用包括欺诈检测、产品推荐和广告定位,这些应用因需要低延迟和实时需求而受益。

Google’s BigQuery ML

Google的BigQuery是一个数据仓库。它可以通过其机器学习工具提供预测性分析,为决策提供指导。您可以在不导出数据出BigQuery的情况下创建和训练模型。与Vertex AI类似,BigQuery ML不需要环境和依赖项设置。BigQuery ML基于浏览器,并且是无服务器的,这意味着您不需要服务器来运行它。如果您的数据已经存储在BigQuery的数据仓库中,那么您可以将这些数据用于您的机器学习项目。

Amazon Aurora ML 和 Redshift ML

亚马逊的Aurora是一个云中构建的关系数据库管理系统(RDBMS),具有完整的MySQL和PostgreSQL兼容性。Amazon Aurora ML允许您使用SQL将基于ML的预测添加到应用程序中。当您运行ML查询时,Aurora会调用Amazon SageMaker以使用各种ML算法。

Redshift ML是一个数据仓库。您可以使用SQL语句在Redshift数据上创建和训练Amazon SageMaker ML模型,然后使用这些模型进行预测。Redshift ML将模型作为SQL函数提供在Redshift数据仓库中使用。

开源机器学习库

开源自动机器学习指的是开源框架,如AutoKeras、Auto-sklearn和Auto-PyTorch,它们在现有的开源库之上增加了一个额外的抽象层。通常,您需要在Jupyter笔记本中编写以下内容:

  1. 安装AutoML包。
  2. 导入包。
  3. 载入数据集。
  4. 数据分割。
  5. 拟合模型。
  6. 预测。
  7. 评估。
  8. 导出模型。

在第4步之后,每个开源框架都有自己的方式来执行模型拟合、预测和评估。图3-18显示了前四个步骤。

image.png

AutoKeras

AutoKeras是一个基于Keras的开源AutoML框架,旨在让非专家能够快速构建具有最少代码的神经网络。使用AutoKeras时,您只需要指定训练数据,AutoKeras会独立执行数据预处理。例如,如果数据包含分类变量,它会根据任务是分类还是回归来将它们转换为独热编码;如果输入数据包含文本,AutoKeras会将其转换为嵌入表示。

Auto-Sklearn

Auto-sklearn是一个基于scikit-learn机器学习库的开源Python包。Auto-sklearn会自动搜索适合新的机器学习数据集的学习算法,并优化其超参数。该框架仅支持基于scikit-learn的模型。Auto-sklearn由弗莱堡大学和汉诺威大学的实验室开发。

Auto-PyTorch

除了Auto-sklearn外,弗莱堡-汉诺威AutoML团队还开发了一个基于PyTorch的AutoML框架,专注于深度学习。Auto-PyTorch被认为非常适合快速原型开发,并支持分布式训练。

总结

业务分析师、数据分析师、公民数据科学家、数据科学家、软件开发人员和机器学习工程师都可以使用AutoML框架来简化开发流程。

首先,您加载一个包括目标变量和用于预测的输入特征数据的数据集。数据加载后,会为每个数据列生成数据概要。要提交一个训练作业,您只需选择一些参数。

然后,AutoML会尝试多个模型并执行模型优化。结果会被呈现出来,还有特征归因信息。 云供应商提供MLaaS服务,以加速和自动化日常ML工作流程,提供工具来将模型集成到应用程序或服务中,以及部署模型到生产环境中。

低代码AutoML需要安装、配置库,并具备一些SQL或Python的知识。开源AutoML是指开源框架,如AutoKeras、Auto-sklearn和Auto-PyTorch,它们在现有的开源库之上增加了一个额外的抽象层。 在第4章中,您将构建一个AutoML模型来预测广告媒体渠道的销售情况。首先,您将使用Pandas探索数据。然后,您将学习如何使用AutoML来构建、训练和部署一个ML模型来预测销售情况。

如何学习大模型 AI ?

由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。

但是具体到个人,只能说是:

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

😝有需要的小伙伴,可以点击下方链接免费领取或者V扫描下方二维码免费领取🆓

在这里插入图片描述

在这里插入图片描述

第一阶段(10天):初阶应用

该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。

  • 大模型 AI 能干什么?
  • 大模型是怎样获得「智能」的?
  • 用好 AI 的核心心法
  • 大模型应用业务架构
  • 大模型应用技术架构
  • 代码示例:向 GPT-3.5 灌入新知识
  • 提示工程的意义和核心思想
  • Prompt 典型构成
  • 指令调优方法论
  • 思维链和思维树
  • Prompt 攻击和防范

第二阶段(30天):高阶应用

该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。

  • 为什么要做 RAG
  • 搭建一个简单的 ChatPDF
  • 检索的基础概念
  • 什么是向量表示(Embeddings)
  • 向量数据库与向量检索
  • 基于向量检索的 RAG
  • 搭建 RAG 系统的扩展知识
  • 混合检索与 RAG-Fusion 简介
  • 向量模型本地部署

第三阶段(30天):模型训练

恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。

到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?

  • 为什么要做 RAG
  • 什么是模型
  • 什么是模型训练
  • 求解器 & 损失函数简介
  • 小实验2:手写一个简单的神经网络并训练它
  • 什么是训练/预训练/微调/轻量化微调
  • Transformer结构简介
  • 轻量化微调
  • 实验数据集的构建

第四阶段(20天):商业闭环

对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。

  • 硬件选型
  • 带你了解全球大模型
  • 使用国产大模型服务
  • 搭建 OpenAI 代理
  • 热身:基于阿里云 PAI 部署 Stable Diffusion
  • 在本地计算机运行大模型
  • 大模型的私有化部署
  • 基于 vLLM 部署大模型
  • 案例:如何优雅地在阿里云私有部署开源大模型
  • 部署一套开源 LLM 项目
  • 内容安全
  • 互联网信息服务算法备案

学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。

如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

😝有需要的小伙伴,可以Vx扫描下方二维码免费领取==🆓

在这里插入图片描述

  • 21
    点赞
  • 21
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
机器学习(Machine Learning, ML)是一种应用人工智能AI)领域的科学技术,它使得计算机系统能够从数据中自动学习和改进,而无需显式编程。在机器学习的过程中,算法会通过识别和挖掘数据中的模式来构建一个模型,这个模型可以用于做出预测、分类、聚类、回归以及其他复杂的数据驱动决策。 机器学习的主要类型包括监督学习、无监督学习和半监督学习。在监督学习中,算法根据已知标签的数据集进行训练,以便对未知数据进行预测,例如分类任务(判断邮件是否为垃圾邮件)或回归任务(预测房价)。无监督学习则是在没有标签的情况下,仅凭数据本身的特征发现其中隐藏的结构或模式,如聚类分析(将用户分组到不同的客户细分群体中)。半监督学习介于两者之间,它部分数据有标签,部分数据无标签。 机器学习算法涵盖众多方法,包括但不限于逻辑回归、决策树、随机森林、支持向量机、K近邻算法、神经网络以及深度学习技术等。随着计算能力的增强和大数据时代的到来,机器学习已经在诸多领域展现出强大的功能,如图像识别、语音识别、自然语言处理、推荐系统、金融风控、医疗诊断等。 此外,机器学习的发展与统计学习、逼近论、凸优化、概率论等诸多数学和计算机科学领域紧密相关,且不断地推动着新算法和理论框架的创新与发展。同时,现代机器学习尤其是深度学习模型的内部工作机制有时难以完全解释,因此常被称为“黑箱”决策过程,这也是当前研究中的一个重要挑战。
机器学习是一门让计算机通过算法学习并改进性能的技术。从入门到精通机器学习需要系统的学习和实践。首先,需要掌握数学和统计学的基础知识,包括线性代数、概率论和统计推断等。其次,需要学习编程语言,如Python、R或者Java等,以及常用的机器学习框架,如TensorFlow、PyTorch等。然后,需要了解不同类型的机器学习算法,如监督学习、无监督学习和强化学习,并学会如何使用这些算法解决实际问题。此外,还需要学习如何处理和分析数据,如数据清洗、特征工程和模型评估等。最后,需要不断实践,通过参与项目或者比赛,不断提升自己的机器学习能力。 咕泡ai算法工程师 代码是一本优秀的书籍,其中包含了机器学习的基础知识、常用算法和实践经验。通过学习这本书,可以系统地了解机器学习的理论和实践,从而快速入门并逐步精通这一领域。书中涵盖了数学和编程基础、常用机器学习算法的原理和应用、数据处理和特征工程、模型评估和调优等内容,可帮助读者系统地掌握机器学习的核心知识和技能。此外,书中还包含了丰富的案例和实战经验,可以帮助读者将理论知识应用到实际项目中,并获得宝贵的实践经验。因此,通过阅读咕泡ai算法工程师 代码,可以快速掌握机器学习的核心知识和技能,从而成为一名优秀的机器学习工程师。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值