混合专家模型 (MoE) 简述

本文详细介绍了混合专家模型(MoE)在Transformer架构中的关键组成部分,如稀疏MoE层、门控网络的负载均衡,以及不同变体如GShard和SwitchTransformers的特点。同时涵盖了大模型AI的学习路径,包括不同阶段的应用、模型训练和商业部署的考虑因素。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

引言

本文主要想梳理一下 MoE 模型相关的概念,并阅读整理部分开源 MoE 模型的论文,简要地描述整体架构等。

概念

关于MoE 模型详解的部分主要参考了这篇文章 混合专家模型 (MoE) 详解

Transformer 和 MoE

先回顾一下 Transformer 架构

  • Transformer 完整结构由若干个 Block 组成
  • 每个 Block 中包含了编码器 Encoder 和解码器 Decoder
  • EncoderDecoder 都包含4个部分:注意力层 Attention、位置感知前馈层 FNN、残差连接 Add 和层归一化 Norm

Transformer 架构.png 混合专家模型 (MoE) 是一种基于 Transformer 架构的模型,主要是由两个关键部分组成:

  • 稀疏 MoE 层:代替了 Transformer 架构中的前馈层 FNNMoE 层包含了多个专家,每个专家可以是一个独立的神经网络,通常是前馈网络 FNN,但也可以是更复杂的网络结构,甚至可以是 MoE 层本身。
  • 门控网络或路由:这部分决定 token 被发送到哪个专家。一个令牌可以被发送到多个专家,路由器由学习的参数组成,并与网络的其他部分一起进行预训练。

Switch Transfomer.png

稀疏性

在传统的 Transformer 稠密模型中,所有参数都会对所有输入数据进行处理;相比而言,MoE 稀疏模型支持仅对整个系统的某些特定部分执行计算,即可以根据输入的特定特征或需求,只运行和调用部分参数,这被称为条件计算

22年的一篇论文,指出了 Transformer 模型中 FFNs 也存在稀疏性激活问题。换句话说,对于单个输出,只有 FFNs 中一小部分神经元被激活(引用自 MoEfication: Transformer Feed-forward Layers are Mixtures of Experts )。为了验证这个结论,作者将 Transformer 中的 FNNs 层分割成多个专家,称作 MoEfication,比较重要的主要是两点:

  • 专家分割:将 FFNs 分割成多个功能区作为专家,这里主要提供了两种方法

    • 参数聚类分割:使用平衡 K-Means (Balanced K-Means) 算法对神经元向量做聚类
    • 共激活图分割:构建共激活图 (Co-activation Graph)
  • 专家选择:这部分主要决定如何选择专家,这里没有使用典型的 MoE 门控网络,只是浅谈一下

    • Groundtruth Selection:用贪婪算法计算每个专家的得分,然后选得分最高的专家
    • Similarity Selection:用余弦距离做近似计算,选出最近似的
    • MLP Selection (推荐):训练多层感知器 (MLP),预测每个专家中激活神经元的总和并将其作为得分

MoEfication.png

门控网络

但这里还需要注意一点的是,需要对专家进行负载均衡,以防止不均匀分配和资源利用效率不高的问题。这可以通过一个可学习的门控网络 (G) 来决定要发送给哪些专家 (E):

y=∑i=1nG(x)iEi(x)y=\sum^n_{i=1}G(x)_iE_i(x)y=∑i=1n​G(x)i​Ei​(x)

典型的可学习的门控网络 (G) 通常是带有 softmaxsoftmaxsoftmax 函数的网络(返回每个输出分类的结果和概率),但默认的 softmaxsoftmaxsoftmax 函数是返回所有结果,即返回所有专家和概率。在这种情况下可以再引入一些可调整的噪声,然后保留k个值,公式如下。 (引用自 Outrageously Large Neural Networks: The Sparsely-Gated Mixture-of-Experts Layer )

H(x)i=(xWg)∗i+StandardNormal()∗SoftPlus((xW∗noise)i)H(x)_i =(xW_g)*i + StandardNormal()SoftPlus((xW{noise})_i)H(x)i​=(xWg​)∗i+StandardNormal()∗SoftPlus((xW∗noise)i​)

G(x)=Softmax(KeepTopK(H(x),k))G(x)=Softmax(KeepTopK(H(x), k))G(x)=Softmax(KeepTopK(H(x),k))

最后还需要注意的是,在训练 MoE 模型的过程中,因为受欢迎的专家训练的更快,所以门控网络往往更倾向于主要激活相同的几个专家,使得这种情况自我加强。为了缓解这个问题,就需要引入一个辅助损失,从而确保所有专家接收大致相等数量的训练样本。在 transformers 库中,可以通过 aux_loss 参数来控制辅助损失。

💡 稀疏混合专家模型 (MoE) 更适用于有多台机器且要求高吞吐量的场景;相反,显存较少且吞吐量低的场景更适合用稠密Transfomer模型

GShard:Top-2 门控

谷歌使用 MoE 架构将模型的参数量扩展到了 6000亿。 (引用自 GShard: Scaling Giant Models with Conditional Computation and Automatic Sharding )

GShard 将编码器和解码器中的每个前馈网络层(FNN)替换为一个 Top-2 门控网络的 MoE 层。简而言之,token 进入 MoE 层之后,通过门控网络选出 Top-2 的专家进行处理,每个专家都是 Transformer 架构的稠密模型。

GShard.png

GShard 还引入了一下关键变化:

  • 随机路由:Top-2选择中,第一个专家是排名最高的,第二个专家是根据其权重比例随机选择的
  • 专家容量:设定阈值来定义专家能处理多少个 token。如果两个专家的容量都达到上限,令牌就会溢出,并通过残差链接传递到下一层,或在某些情况下被完全丢弃。所以 MoE 模型的专家容量决定了能处理的token长度。

Switch Transformers:单专家和专家容量

HuggingFace 上开源的 Switch Transformer 是模型是一个基于 google/flan-t5-large 模型改造的 MoE ,拥有2048个专家、1.6万亿参数的 MoE,专家容量64。Switch Transformer 中的每个专家是一个标准的 FFN,所以总的参数量是标准 Transformer 模型的 2048 倍。

(引用自 Switch Transformers: Scaling to Trillion Parameter Models with Simple and Efficient Sparsity, 模型 google/switch-c-2048)

Switch Transfomer.png

与 GShard 想法不同,Switch Transformers 对经典的 topK 门控进行了简化,采用了单专家策略,即一个token令牌只由一个专家执行,这种方法可以 ① 减少门控网络的计算负担 ② 每个专家的批量大小至少可以减半 ③ 降低通信成本 ④ 保持模型质量。

Switch Transformers也对专家容量进行了研究,建议容量将批次中的令牌数量均匀分配到各个专家,具体公式如下(注:Switch Transformers 在低容量因子 (例如 1 至 1.25) 下表现出色)

Expert Capacity=(tokens per batchnumber of experts)×capacity factorExpert\space{} Capacity = (\frac{tokens \space{}per\space{}batch}{number \space{}of\space{}experts})\times capacity\space{}factorExpert Capacity=(number of expertstokens per batch​)×capacity factor

以开源模型为例,专家容量是64,专家数量是2048,假设容量因子是1,那么每个批次中的令牌数量是 131072。

DeepSeek-MoE:共享专家

这部分主要看一下国产开源的 MoE 模型,在 huggingface 上开源的模型包含164亿参数,共 64个路由专家、2个共享专家,每个令牌会匹配6个专家。(引用自 DeepSeekMoE: Towards Ultimate Expert Specialization in Mixture-of-Experts Language Models, 模型 deepseek-ai/deepseek-moe-16b-base , 微调代码 github.com/deepseek-ai…)

DeepSeek-MoE.png

DeepSeek-MoE 引入了“细粒度/垂类专家”和“共享专家”的概念。

细粒度/垂类专家” 是通过细粒度专家切分 (Fine-Grained Expert Segmentation) 将一个 FFN 切分成 mmm 份。尽管每个专家的参数量小了,但是能够提高专家的专业水平。

共享专家”是掌握更加泛化或公共知识的专家,从而减少每个细粒度专家中的知识冗余,共享专家的数量是固定的且总是处于被激活的状态。

LLaMA-MoE:轻量化和可配化

LLaMA-MoE-v1 是基于 LLaMA2 的一个 MoE 模型。类似 MoEfication,LLaMA-MoE-v1 将 LLaMA2 模型中的前馈网络层 FFNs 分割为包含多个专家的 MoE,这导致LLaMA-MoE-v1中一个专家的参数比其他 MoE 模型要更小些。(引用 LLaMA-MoE: Building Mixture-of-Experts from LLaMA with Continual Pre-training, 模型 llama-moe, 代码库 github.com/pjlab-sys4n…)

对于分割方法,这里提供了随机(Random)、聚类(Clustering)、共激活图(Co-activation Graph)和梯度(Gradient)等等。

对于专家路由即门控网络部分, LLaMA-MoE-v1 实现了经典的 TopK 噪声门控,也实现了 Switch Transformer 中提出的单专家门控。

LLaMA-MoE.png

如何学习大模型 AI ?

由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。

但是具体到个人,只能说是:

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

😝有需要的小伙伴,可以点击下方链接免费领取或者V扫描下方二维码免费领取🆓

在这里插入图片描述

在这里插入图片描述

第一阶段(10天):初阶应用

该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。

  • 大模型 AI 能干什么?
  • 大模型是怎样获得「智能」的?
  • 用好 AI 的核心心法
  • 大模型应用业务架构
  • 大模型应用技术架构
  • 代码示例:向 GPT-3.5 灌入新知识
  • 提示工程的意义和核心思想
  • Prompt 典型构成
  • 指令调优方法论
  • 思维链和思维树
  • Prompt 攻击和防范

第二阶段(30天):高阶应用

该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。

  • 为什么要做 RAG
  • 搭建一个简单的 ChatPDF
  • 检索的基础概念
  • 什么是向量表示(Embeddings)
  • 向量数据库与向量检索
  • 基于向量检索的 RAG
  • 搭建 RAG 系统的扩展知识
  • 混合检索与 RAG-Fusion 简介
  • 向量模型本地部署

第三阶段(30天):模型训练

恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。

到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?

  • 为什么要做 RAG
  • 什么是模型
  • 什么是模型训练
  • 求解器 & 损失函数简介
  • 小实验2:手写一个简单的神经网络并训练它
  • 什么是训练/预训练/微调/轻量化微调
  • Transformer结构简介
  • 轻量化微调
  • 实验数据集的构建

第四阶段(20天):商业闭环

对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。

  • 硬件选型
  • 带你了解全球大模型
  • 使用国产大模型服务
  • 搭建 OpenAI 代理
  • 热身:基于阿里云 PAI 部署 Stable Diffusion
  • 在本地计算机运行大模型
  • 大模型的私有化部署
  • 基于 vLLM 部署大模型
  • 案例:如何优雅地在阿里云私有部署开源大模型
  • 部署一套开源 LLM 项目
  • 内容安全
  • 互联网信息服务算法备案

学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。

如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

😝有需要的小伙伴,可以Vx扫描下方二维码免费领取==🆓

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值