提升和创新!10款最新创新混合专家模型(MoE)汇总!(附论文)

本文汇总了10款最新混合专家模型(MoE),包括DeepSeekMoE、Mixtral 8x7B、Flan-MoE等,这些模型在提高处理速度、增强泛化能力和简化架构方面取得突破,适用于语言模型、代码生成、语音识别等任务。各模型通过优化专家选择、并行训练和动态配置,实现了高效能与低计算需求的平衡。
摘要由CSDN通过智能技术生成

随着深度学习技术的不断发展,混合专家模型(MoE)已成为一种备受关注的新型模型,MoE通过结合多个专家模型来提高预测精度和泛化能力,从而在各种任务中表现出卓越的性能。

今天特意给大家整理了10个最新MoE模型,包含提高处理速度、增强模型泛化能力、简化模型架构等方面,大家可以认真研究一下!

1、DeepSeekMoE

论文:DeepSeekMoE: Towards Ultimate Expert Specialization in Mixture-of-Experts Language Models

Deepseekmoe:在混合专家语言模型中走向最终的专家专业化

简述:本文提出了一个新架构DeepSeekMoE,它通过优化专家的选择和利用共享专家来捕捉普遍知识,加强了模型的专业化。在测试中,2亿参数的DeepSeekMoE就达到了GShard 29亿参数模型的水平,它的性能在16亿参数上也非常出色,与计算量更大的LLaMA2 70亿参数相当。推进到1450亿参数,DeepSeekMoE在减少了计算需求的同时,性能媲美或优于传统MoE模型。

图片

2、 Mixtral 8x7B

论文:Mixtral of Experts

专家组合

简述:本文提出了Mixtral 8x7B,这是一种稀疏专家混合 (SMoE) 语言模型,在数学、代码生成和多语言基准测试方面远远优于 Llama 2 70B,并提供了一个经过微调以遵循指令的模型 Mixtral 8x7B - Instruct,它在人类基准测试中超过了 GPT-3.5 Turbo、Claude-2.1、Gemini Pro 和 Llama 2 70B - 聊天模型。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值